scholarly journals ISOTROPIC CASES OF STATIC CHARGED FLUID SPHERES IN GENERAL RELATIVITY

2011 ◽  
Vol 20 (09) ◽  
pp. 1675-1687 ◽  
Author(s):  
BASANTI DAS ◽  
PRATAP CHANDRA RAY ◽  
IRINA RADINSCHI ◽  
FAROOK RAHAMAN ◽  
SAIBAL RAY

In this paper we study the isotropic cases of static charged fluid spheres in general relativity. For this purpose we consider two different specializations and under these we solve the Einstein–Maxwell field equations in isotropic coordinates. The analytical solutions thus obtained are matched to the exterior Reissner–Nordström solutions which concern the values for the metric coefficients eν and eμ. We derive the pressure, density and pressure-to-density ratio at the center of the charged fluid sphere and boundary R of the star. Our conclusion is that static charged fluid spheres provide a good connection to compact stars.

Author(s):  
Jay Solanki ◽  
Bhashin Thakore

A new class of solutions describing analytical solutions for compact stellar structures has been developed within the tenets of General Relativity. Considering the inherent anisotropy in compact stars, a stable and causal model for realistic anisotropic neutron stars was obtained using the general theory of relativity. Assuming a physically acceptable nonsingular form of one metric potential and radial pressure containing the curvature parameter [Formula: see text], the constant [Formula: see text] and the radius [Formula: see text], analytical solutions to Einstein’s field equations for anisotropic matter distribution were obtained. Taking the value of [Formula: see text] as −0.44, it was found that the proposed model obeys all necessary physical conditions, and it is potentially stable and realistic. The model also exhibits a linear equation of state, which can be applied to describe compact stars.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Neeraj Pant ◽  
N. Pradhan ◽  
Ksh. Newton Singh

We have presented a class of charged superdense star models, starting with a static spherically symmetric metric in isotropic coordinates for anisotropic fluid by considering Hajj-Boutros-(1986) type metric potential and a specific choice of electrical intensity E and anisotropy factor Δ which involve charge parameter K and anisotropy parameter α. The solution is well behaved for all the values of Schwarzschild compactness parameter u lying in the range 0<u≤0.2086, for all values of charge parameter K lying in the range 0.04≤K≤0.111 , and for all values of anisotropy parameter α lying in the range 0.016≥α≥0. With the increase in α, the values of K and u decrease. Further, we have constructed a superdense star model with all degree of suitability. The solution so obtained is utilized to construct the models for superdense star like neutron stars ρb=2.7×1014 g/cm3 and strange quark stars  ρb=4.6888×1014 g/cm3 . For K=0.06 and α=0.01, the maximum mass of neutron star is observed as M=1.53 M⊙ and radius R=11.48 km. Further for strange quark stars M=1.16 M⊙ and R=8.71 km are obtained.


2013 ◽  
Vol 350 (1) ◽  
pp. 293-305 ◽  
Author(s):  
Mohammad Hassan Murad ◽  
Saba Fatema

1966 ◽  
Vol 6 (2) ◽  
pp. 139-147
Author(s):  
R. van der Borght

AbstractIn this paper we derive solutions of the field equations of general relativity for a compressible fluid sphere which obeys density-temperature and pressure-temperature relations which allow for a variation of the polytropic index throughout the sphere.


Author(s):  
Jay Solanki

In this paper, model of gravitational collapse of anisotropic compact stars in a new theory of [Formula: see text] gravity has been developed. The author considers the modified gravity model of [Formula: see text] to investigate a physically acceptable model of gravitational collapse of anisotropic compact stars. First, the author presents a brief review of the development of field equations of gravitational collapse in [Formula: see text] gravity for a particular interior metric for compact stars. Then analytical solutions for various physical quantities of collapsing anisotropic compact stars in [Formula: see text] gravity have been developed. By analyzing plots of various physical parameters and conditions, it is shown that the model is physically acceptable for describing the gravitational collapse of anisotropic compact stars in [Formula: see text] gravity.


Sign in / Sign up

Export Citation Format

Share Document