isotropic coordinates
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3121
Author(s):  
Krasimir Kanchev ◽  
Ognian Kassabov ◽  
Velichka Milousheva

We consider Lorentz surfaces in R13 satisfying the condition H2−K≠0, where K and H are the Gaussian curvature and the mean curvature, respectively, and call them Lorentz surfaces of general type. For this class of surfaces, we introduce special isotropic coordinates, which we call canonical, and show that the coefficient F of the first fundamental form and the mean curvature H, expressed in terms of the canonical coordinates, satisfy a special integro-differential equation which we call a natural equation of the Lorentz surfaces of a general type. Using this natural equation, we prove a fundamental theorem of Bonnet type for Lorentz surfaces of a general type. We consider the special cases of Lorentz surfaces of constant non-zero mean curvature and minimal Lorentz surfaces. Finally, we give examples of Lorentz surfaces illustrating the developed theory.


Author(s):  
Rahulkumar Solanki

Abstract The Kottler spacetime in isotropic coordinates is known where the metric is time-dependent. In this paper, the Kottler spacetime is given in isotropic static coordinates (i.e., the metric components are time-independent). The metric is found in terms of the Jacobian elliptic functions through coordinate transformations from the Schwarzschild-(anti-)de Sitter metric. In canonical coordinates, it is known that the unparameterized spatially projected null geodesics of the Kottler and Schwarzschild spacetimes coincide. We show that in isotropic static coordinates, the refractive indices of Kottler and Schwarzschild are not proportional, yielding spatially projected null geodesics that are different.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Poul H. Damgaard ◽  
Ludovic Planté ◽  
Pierre Vanhove

Abstract An exponential representation of the S-matrix provides a natural framework for understanding the semi-classical limit of scattering amplitudes. While sharing some similarities with the eikonal formalism it differs from it in details. Computationally, rules are simple because pieces that must be subtracted are given by combinations of unitarity cuts. Analyzing classical gravitational scattering to third Post-Minkowskian order in both maximal supergravity and Einstein gravity we find agreement with other approaches, including the contributions from radiation reaction terms. The kinematical relation for the two-body problem in isotropic coordinates follows immediately from this procedure, again with the inclusion of radiation reaction pieces up to third Post-Minkowskian order.


2021 ◽  
Vol 95 (8) ◽  
Author(s):  
P. Zingerle ◽  
R. Pail ◽  
M. Willberg ◽  
M. Scheinert

AbstractWe present a partition-enhanced least-squares collocation (PE-LSC) which comprises several modifications to the classical LSC method. It is our goal to circumvent various problems of the practical application of LSC. While these investigations are focused on the modeling of the exterior gravity field the elaborated methods can also be used in other applications. One of the main drawbacks and current limitations of LSC is its high computational cost which grows cubically with the number of observation points. A common way to mitigate this problem is to tile the target area into sub-regions and solve each tile individually. This procedure assumes a certain locality of the LSC kernel functions which is generally not given and, therefore, results in fringe effects. To avoid this, it is proposed to localize the LSC kernels such that locality is preserved, and the estimated variances are not notably increased in comparison with the classical LSC method. Using global covariance models involves the calculation of a large number of Legendre polynomials which is usually a time-consuming task. Hence, to accelerate the creation of the covariance matrices, as an intermediate step we pre-calculate the covariance function on a two-dimensional grid of isotropic coordinates. Based on this grid, and under the assumption that the covariances are sufficiently smooth, the final covariance matrices are then obtained by a simple and fast interpolation algorithm. Applying the generalized multi-variate chain rule, also cross-covariance matrices among arbitrary linear spherical harmonic functionals can be obtained by this technique. Together with some further minor alterations these modifications are implemented in the PE-LSC method. The new PE-LSC is tested using selected data sets in Antarctica where altogether more than 800,000 observations are available for processing. In this case, PE-LSC yields a speed-up of computation time by a factor of about 55 (i.e., the computation needs only hours instead of weeks) in comparison with the classical unpartitioned LSC. Likewise, the memory requirement is reduced by a factor of about 360 (i.e., allocating memory in the order of GB instead of TB).


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 272
Author(s):  
Jacob Oost ◽  
Shinji Mukohyama ◽  
Anzhong Wang

We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlevè-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and time-independent exact vacuum solutions. In particular, in the isotropic coordinates we find a class of exact static solutions characterized by a single parameter c14 in closed forms, which satisfies all the current observational constraints of the theory, and reduces to the Schwarzschild vacuum black hole solution in the decoupling limit (c14=0). However, as long as c14≠0, a marginally trapped throat with a finite non-zero radius always exists, and on one side of it the spacetime is asymptotically flat, while on the other side the spacetime becomes singular within a finite proper distance from the throat, although the geometric area is infinitely large at the singularity. Moreover, the singularity is a strong and spacetime curvature singularity, at which both of the Ricci and Kretschmann scalars become infinitely large.


Author(s):  
A. C. L. Santos ◽  
C. R. Muniz ◽  
L. T. Oliveira

In this paper, we investigate the role of gravito-inertial effects on the Casimir energy of a massless scalar field confined between two parallel plates orbiting a static and zero tidal Schwarzschild-like wormhole, at zero temperature. Firstly, we obtain the metric in isotropic coordinates, finding the allowed angular velocities and the circular orbit radii for a material particle as well as for the photon. Following this, we compute the changes induced by both gravity and rotation of the plates in the energy density of the quantum vacuum fluctuations associated to the scalar field, in the zero tidal approximation inside the cavity. Finally, the Casimir energy obtained for some these wormholes are graphically compared between themselves and also with those ones related to an Ellis wormhole as well as to a Schwarzschild black hole. With this, the gravito-inertial effects on the quantum vacuum fluctuations analyzed in this work allow to recognize and identify both the geometry and topology of the spacetime associated to each one of these objects.


2020 ◽  
Vol 52 (12) ◽  
Author(s):  
Oliver Rinne

AbstractWe develop a numerical method suitable for gravitational collapse based on Cauchy evolution with an ingoing characteristic boundary. Unlike similar methods proposed recently (Ripley; Bieri et al. in Class Quantum Grav 37:045015, 2020), the numerical grid remains fixed during the evolution and no points need to be removed or added. Increasing coordinate refinement of the central region as the field collapses is achieved solely through the choice of spatial gauge and particularly its boundary condition. We apply this method to study critical collapse of a massless scalar field in spherical symmetry using maximal slicing and isotropic coordinates. Known results on mass scaling, discrete self-similarity and universality of the critical solution (Choptuik in Phys Rev Lett 70:9, 1993) are reproduced using this considerably simpler numerical method.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050164 ◽  
Author(s):  
M. Govender ◽  
A. Maharaj ◽  
Ksh. Newton Singh ◽  
Neeraj Pant

In this paper, we employ the Karmarkar condition to model a spherically symmetric radiating star undergoing dissipative gravitational collapse within the framework of classical general relativity. The collapse ensues from an initial static core satisfying the Karmarkar condition in isotropic coordinates and proceeds nonadiabatically by emitting energy in the form of a radial heat flux to the exterior Vaidya spacetime. We show that the dynamical nature of the collapse is sensitive to the initial static configuration that inherently links the embedding to the final remnant. Our model considered several physical tests on how an initially static stellar structure onset to a radiative collapse.


Sign in / Sign up

Export Citation Format

Share Document