An investigation of bin–bin correlation by the method of factorial correlator in high-energy heavy ion collisions

Author(s):  
Swarnapratim Bhattacharyya ◽  
Alina Tania Neagu ◽  
Elena Firu

This paper presents a study of bin–bin correlation of the produced shower particles in the pseudo-rapidity space by the method of factorial correlator in [Formula: see text]O-AgBr and [Formula: see text]S-AgBr interactions at 4.5[Formula: see text][Formula: see text]GeV/[Formula: see text]. The correlated moments are found to increase with decreasing bin–bin separation D, following a power law. Strong bin–bin correlation is exhibited by the experimental data. Experimental data also supports the validity of log normal approximation. Experimental analysis has been compared with the results obtained from the analysis of events simulated by UrQMD model.

1999 ◽  
Vol 77 (4) ◽  
pp. 313-318 ◽  
Author(s):  
F -H Liu ◽  
Y A Panebratsev

The pseudorapidity distribution of relativistic singly charged particles produced in high-energy heavy-ion collisions is described by the thermalized cylinder picture. The calculated results are in agreement with the experimental data of lead-induced interactions at 158A GeV/c. PACS Nos.:25.75.-q and 25.75.Dw


2013 ◽  
Vol 2013 ◽  
pp. 1-25 ◽  
Author(s):  
A. K. Chaudhuri

Viscous hydrodynamical modeling of relativistic heavy ion collisions has been highly successful in explaining bulk of the experimental data in RHIC and LHC energy collisions. We briefly review viscous hydrodynamics modeling of high energy nuclear collisions. Basic ingredients of the modeling, the hydrodynamic equations, relaxation equations for dissipative forces, are discussed. Hydrodynamical modeling being a boundary value problem, we discuss the initial conditions, freeze-out process. We also show representative simulation results in comparison with experimental data. We also discuss the recent developments in event-by-event hydrodynamics.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012134
Author(s):  
V S Borisov ◽  
A Ya Berdnikov ◽  
Ya A Berdnikov ◽  
D O Kotov ◽  
Iu M Mitrankov

Abstract The study of deconfinement state of nuclear matter called quark-gluon plasma (QGP) and phase transition of QGP to hadronic gas is the main goal of high energy physics. Some of the important signatures of QGP formation in heavy-ion collisions include strangeness enhancement at intermediate values of the transverse momentum (ρT ) and a jet quenching effect at high ρT values. Nuclear modification factors (RAB ) for light hadrons are used to quantify these effects. The K *0 and φ mesons can serve as a good probes to investigate QGP properties, because these mesons contain (anti)strange quark and its yields can be measured in a wide ρT range. Comparison of experimental data with theoretical model calculations is important for understanding the evolution of heavy-ion collision. One of the most commonly used event generators to describe experimental results of collider experiments is Pythia8. This paper shows, that Pythia8 predicts RAB values of K *0 and φ less than RAB values in experimental data. Consequently, additional (hidden)strange particle production mechanisms are involved.


2003 ◽  
Vol 554 (1-2) ◽  
pp. 21-27 ◽  
Author(s):  
Alex Krasnitz ◽  
Yasushi Nara ◽  
Raju Venugopalan

1984 ◽  
Vol 71 (6) ◽  
pp. 1429-1431 ◽  
Author(s):  
Y. Kitazoe ◽  
O. Hashimoto ◽  
H. Toki ◽  
Y. Yamamura ◽  
M. Sano

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
T. Niida ◽  
Y. Miake

AbstractThe progress over the 30 years since the first high-energy heavy-ion collisions at the BNL-AGS and CERN-SPS has been truly remarkable. Rigorous experimental and theoretical studies have revealed a new state of the matter in heavy-ion collisions, the quark-gluon plasma (QGP). Many signatures supporting the formation of the QGP have been reported. Among them are jet quenching, the non-viscous flow, direct photons, and Debye screening effects. In this article, selected signatures of the QGP observed at RHIC and the LHC are reviewed.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Hong-Zhong Wu ◽  
Long-Gang Pang ◽  
Xu-Guang Huang ◽  
Qun Wang

Sign in / Sign up

Export Citation Format

Share Document