scholarly journals Signatures of QGP at RHIC and the LHC

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
T. Niida ◽  
Y. Miake

AbstractThe progress over the 30 years since the first high-energy heavy-ion collisions at the BNL-AGS and CERN-SPS has been truly remarkable. Rigorous experimental and theoretical studies have revealed a new state of the matter in heavy-ion collisions, the quark-gluon plasma (QGP). Many signatures supporting the formation of the QGP have been reported. Among them are jet quenching, the non-viscous flow, direct photons, and Debye screening effects. In this article, selected signatures of the QGP observed at RHIC and the LHC are reviewed.

Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
ShinIchi Esumi

AbstractAzimuthal event anisotropy and particle correlation have been used to analyze the collectivity of the system created in the high-energy heavy-ion collisions in order to study the properties of Quark Gluon Plasma (QGP). Higher harmonic event anisotropy is recently recognized to carry the information of initial participant geometrical fluctuation because of the finite number of participating nucleons in heavy-ion collisions. The system response after the collective expansion can be observed as higher harmonic event anisotropy, the n-th harmonic order dependence can be used to further constrain the hydro-dynamical properties of the system. The multi-particle azimuthal correlation with respect to the higher harmonic event plane can be used as a tool to understand the origin of the higher harmonic event anisotropy and its relation to the medium response from the jet-quenching as soft-hard interplay. Recent results on the higher harmonic event anisotropy measurements and an attempt of two-particle correlation analysis with respect to the higher harmonic event planes are discussed.


1991 ◽  
Vol 06 (04) ◽  
pp. 517-558 ◽  
Author(s):  
SIBAJI RAHA ◽  
BIKASH SINHA

We review the production of dilepton pairs, direct photons and diphoton pairs in ultrarelativistic heavy ion collisions, with special attention to the applicability of these particles as the signal for a new state of matter—the quark-gluon plasma.


2018 ◽  
Vol 172 ◽  
pp. 05010 ◽  
Author(s):  
Christine Nattrass

The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early in the collision fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed.


2015 ◽  
Vol 24 (11) ◽  
pp. 1530014 ◽  
Author(s):  
Guang-You Qin ◽  
Xin-Nian Wang

Jet quenching in high-energy heavy-ion collisions can be used to probe properties of hot and dense quark–gluon plasma. We provide a brief introduction to the concept and framework for the study of jet quenching. Different approaches and implementation of multiple scattering and parton energy loss are discussed. Recent progresses in the theoretical and phenomenological studies of jet quenching in heavy-ion collisions at RHIC and LHC are reviewed.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Li-Na Gao ◽  
Fu-Hu Liu

We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Lin Chen ◽  
Shu-Yi Wei ◽  
Han-Zhong Zhang

AbstractDifferent types of high energy hard probes are used to extract the jet transport properties of the Quark-Gluon Plasma created in heavy-ion collisions, of which the heavy boson tagged jets are undoubtedly the most sophisticated due to its clean decay signature and production mechanism. In this study, we used the resummation improved pQCD approach with high order correction in the hard factor to calculate the momentum ratio $$x_J$$ x J distributions of Z and Higgs (H) tagged jets. We found that the formalism can provide a good description of the 5.02 TeV pp data. Using the BDMPS energy loss formalism, along with the OSU 2 + 1D hydro to simulate the effect of the medium, we extracted the value of the jet transport coefficient to be around $${\hat{q}}_0=4\sim 8~\text {GeV}^2/\text {fm}$$ q ^ 0 = 4 ∼ 8 GeV 2 / fm by comparing with the Z + jet PbPb experimental data. The H + jet $$x_J$$ x J distribution were calculated in a similar manner in contrast and found to have a stronger Sudakov effect as compared with the Z + jet distribution. This study uses a clean color-neutral boson as trigger to study the jet quenching effect and serves as a complimentary method in the extraction of the QGP’s transport coefficient in high energy nuclear collisions.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Shi-Yong Chen ◽  
Wei Dai ◽  
Shan-Liang Zhang ◽  
Qing Zhang ◽  
Ben-Wei Zhang

AbstractWe present the first theoretical study of medium modifications of the global geometrical pattern, i.e., transverse sphericity ($$S_{\perp }$$ S ⊥ ) distribution of jet events with parton energy loss in relativistic heavy-ion collisions. In our investigation, POWHEG + PYTHIA is employed to make an accurate description of transverse sphericity in the p + p baseline, which combines the next-to-leading order (NLO) pQCD calculations with the matched parton shower (PS). The Linear Boltzmann Transport (LBT) model of the parton energy loss is implemented to simulate the in-medium evolution of jets. We calculate the event normalized transverse sphericity distribution in central Pb + Pb collisions at the LHC, and give its medium modifications. An enhancement of transverse sphericity distribution at small $$S_{\perp }$$ S ⊥ region but a suppression at large $$S_{\perp }$$ S ⊥ region are observed in A + A collisions as compared to their p + p references, which indicates that in overall the geometry of jet events in Pb + Pb becomes more pencil-like. We demonstrate that for events with 2 jets in the final-state of heavy-ion collisions, the jet quenching makes the geometry more sphere-like with medium-induced gluon radiation. However, for events with $$\ge 3$$ ≥ 3 jets, parton energy loss in the QCD medium leads to the events more pencil-like due to jet number reduction, where less energetic jets may lose their energies and then fall off the jet selection kinematic cut. These two effects offset each other and in the end result in more jetty events in heavy-ion collisions relative to that in p + p.


2013 ◽  
Vol 28 (27) ◽  
pp. 1330043 ◽  
Author(s):  
HELMUT SATZ

The ultimate aim of high energy heavy ion collisions is to study quark deconfinement and the quark–gluon plasma predicted by quantum chromodynamics. This requires the identification of observables calculable in QCD and measurable in heavy ion collisions. I concentrate on three such phenomena, related to specific features of strongly interacting matter. The observed pattern of hadrosynthesis corresponds to that of an ideal resonance gas in equilibrium at the pseudo-critical temperature determined in QCD. The critical behavior of QCD is encoded in the fluctuation patterns of conserved quantum numbers, which are presently being measured. The temperature of the quark–gluon plasma can be determined by the dissociation patterns of the different quarkonium states, now under study at the LHC for both charmonia and bottomonia.


Sign in / Sign up

Export Citation Format

Share Document