scholarly journals A FRACTAL VALUED RANDOM ITERATION ALGORITHM AND FRACTAL HIERARCHY

Fractals ◽  
2005 ◽  
Vol 13 (02) ◽  
pp. 111-146 ◽  
Author(s):  
MICHAEL BARNSLEY ◽  
JOHN HUTCHINSON ◽  
ÖRJAN STENFLO

We describe new families of random fractals, referred to as "V-variable", which are intermediate between the notions of deterministic and of standard random fractals. The parameter V describes the degree of "variability": at each magnification level any V-variable fractals has at most V key "forms" or "shapes". V-variable random fractals have the surprising property that they can be computed using a forward process. More precisely, a version of the usual Random Iteration Algorithm, operating on sets (or measures) rather than points, can be used to sample each family. To present this theory, we review relevant results on fractals (and fractal measures), both deterministic and random. Then our new results are obtained by constructing an iterated function system (a super IFS) from a collection of standard IFSs together with a corresponding set of probabilities. The attractor of the super IFS is called a superfractal; it is a collection of V-variable random fractals (sets or measures) together with an associated probability distribution on this collection. When the underlying space is for example ℝ2, and the transformations are computationally straightforward (such as affine transformations), the superfractal can be sampled by means of the algorithm, which is highly efficient in terms of memory usage. The algorithm is illustrated by some computed examples. Some variants, special cases, generalizations of the framework, and potential applications are mentioned.

2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Orion Sky Lawlor

Nonlinear functions, including nonlinear iterated function systems, have interesting fixed points. We present a non-Lipschitz theoretical approach to nonlinear function system fixed points which generalizes to noncontractive functions, compare several methods for evaluating such fixed points on modern graphics hardware, and present a nonlinear generalization of Barnsley’s Deterministic Iteration Algorithm. Unlike the many existing randomized rendering algorithms, this deterministic method avoids noncoherent branching and memory access and takes advantage of programmable texture mapping hardware. Together with the performance potential of modern graphics hardware, this allows us to animate high-quality and high-definition fixed points in real time.


2009 ◽  
Vol 147 (2) ◽  
pp. 455-488 ◽  
Author(s):  
R. D. MAULDIN ◽  
T. SZAREK ◽  
M. URBAŃSKI

AbstractWe deal with contracting finite and countably infinite iterated function systems acting on Polish spaces, and we introduce conformal Graph Directed Markov Systems on Polish spaces. Sufficient conditions are provided for the closure of limit sets to be compact, connected, or locally connected. Conformal measures, topological pressure, and Bowen's formula (determining the Hausdorff dimension of limit sets in dynamical terms) are introduced and established. We show that, unlike the Euclidean case, the Hausdorff measure of the limit set of a finite iterated function system may vanish. Investigating this issue in greater detail, we introduce the concept of geometrically perfect measures and provide sufficient conditions for geometric perfectness. Geometrical perfectness guarantees the Hausdorff measure of the limit set to be positive. As a by–product of the mainstream of our investigations we prove a 4r–covering theorem for all metric spaces. It enables us to establish appropriate co–Frostman type theorems.


Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550046
Author(s):  
D. LA TORRE ◽  
F. MENDIVIL

Given a continuous rectifiable function [Formula: see text], we present a simple Iterated Function System (IFS) with probabilities whose invariant measure is the normalized arclength measure on the graph of [Formula: see text].


2008 ◽  
Vol 392-394 ◽  
pp. 575-579
Author(s):  
Yu Hao Li ◽  
Jing Chun Feng ◽  
Y. Li ◽  
Yu Han Wang

Self-affine and stochastic affine transforms of R2 Iterated Function System (IFS) are investigated in this paper for manufacturing non-continuous objects in nature that exhibit fractal nature. A method for modeling and fabricating fractal bio-shapes using machining is presented. Tool path planning algorithm for numerical control machining is presented for the geometries generated by our fractal generation function. The tool path planning algorithm is implemented on a CNC machine, through executing limited number of iteration. This paper describes part of our ongoing research that attempts to break through the limitation of current CAD/CAM and CNC systems that are oriented to Euclidean geometry objects.


Author(s):  
Amine Rahmani

Chaotic cryptography has been a well-studied domain over the last few years. Many works have been done, and the researchers are still getting benefit from this incredible mathematical concept. This paper proposes a new model for coloured image encryption using simple but efficient chaotic equations. The proposed model consists of a symmetric encryption scheme in which it uses the logistic equation to generate secrete keys then an affine recursive transformation to encrypt pixels' values. The experimentations show good results, and theoretic discussion proves the efficiency of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document