CAT'S EYE RADIATION WITH BOUNDARY ELEMENTS: COMPARATIVE STUDY ON TREATMENT OF IRREGULAR FREQUENCIES

2005 ◽  
Vol 13 (01) ◽  
pp. 21-45 ◽  
Author(s):  
STEFFEN MARBURG ◽  
SIA AMINI

This paper reviews a number of techniques developed to overcome the well-known nonuniqueness problem in boundary integral formulations of acoustic radiation. Although the problem has received much attention, comparative studies are hardly known in this field. Furthermore, the problem has often been studied using an unsuitable example, namely a simple radiating sphere. In this case, often the addition of one collocation point in the centre of the sphere suffices to remove the nonuniqueness problem for a large range of wavenumbers. In contrast to the radiating sphere, the radiating cat's eye structure is considered in this paper. Solution of the discretized ordinary Kirchhoff–Helmholtz integral equation, also known as the Surface Helmholtz Equation, reveals a large number of so-called irregular frequencies, i.e. frequencies where the BEM fails. The paper compares the performance of different methods in alleviating this failure. The CHIEF method and its variation due to Rosen et al. are found to encounter difficulties at high frequencies. A much better performance is obtained by combining the Kirchhoff–Helmholtz integral equation with its normal derivative. In particular the method of Burton and Miller and a modification of it which avoids evaluating the hypersingular operator at nonsmooth points are tested. Both methods seem to provide reliable solutions. The modified method encounters minor failures in the frequency response function at a geometric singularity, although performing surprisingly well in many cases. More tests need to be carried out to assess fully the effectiveness of this method which allows easy use of continuous quadratic elements. However, it is the Burton and Miller formulation which appears to be the most reliable for acoustic radiation analysis. The use of CHIEF and its variations cannot be recommended.

2017 ◽  
Vol 25 (01) ◽  
pp. 1750004 ◽  
Author(s):  
Honglin Gao ◽  
Sheng Li

This paper is concerned with the problem of obtaining a unique solution for radiation at irregular frequencies when an integral equation of frequency averaged quadratic pressure (FAQP) is used to get robust predictions at medium and high frequencies. It is proved that there is no unique solution of the integral equation of FAQP at irregular frequencies, and existence and uniqueness of solutions under four types of boundary conditions are discussed. A combined energy boundary integral equation formulation (CEBIEF) is presented and proves to be efficient to overcome the nonuniqueness of the integral equation of FAQP. The numerical examples are given to demonstrate the versatility of the CEBIEF method with a proposed function correctly indicating a solution.


2020 ◽  
pp. 1475472X2097838
Author(s):  
Bassem Barhoumi ◽  
Jamel Bessrour

This paper presents a new numerical analysis approach based on an improved Modal Boundary Element Method (MBEM) formulation for axisymmetric acoustic radiation and propagation problems in a uniform mean flow of arbitrary direction. It is based on the homogeneous Modal Convected Helmholtz Equation (MCHE) and its convected Green’s kernel using a Fourier transform method. In order to simplify the flow terms, a general modal boundary integral solution is formulated explicitly according to two new operators such as the particular and convected kernels. Through the use of modified operators, the improved MBEM approach with flow takes a convective form of the general MBEM approach and has a similar form of the nonflow MBEM formulation. The reference and reduced Helmholtz Integral Equations (HIEs) are implicitly taken into account a new nonreflecting Sommerfeld condition to solve far field axisymmetric regions in a uniform mean flow. For isolating the singular integrations, the modal convected Green’s kernel and its modified normal derivative are performed partly analytically in terms of Laplace coefficients and partly numerically in terms of Fourier coefficients. These coefficients are computed by recursion schemes and Gauss-Legendre quadrature standard formulae. Specifically, standard forms of the free term and its convected angle resulting from the singular integrals can be expressed only in terms of real angles in meridian plane. To demonstrate the application of the improved MBEM formulation, three exterior acoustic case studies are considered. These verification cases are based on new analytic formulations for axisymmetric acoustic sources, such as axisymmetric monopole, axial and radial dipole sources in the presence of an arbitrary uniform mean flow. Directivity plots obtained using the proposed technique are compared with the analytical results.


2016 ◽  
Vol 24 (01) ◽  
pp. 1550016 ◽  
Author(s):  
Steffen Marburg

The phenomenon of irregular frequencies or spurious modes when solving the Kirchhoff–Helmholtz integral equation has been extensively studied over the last six or seven decades. A class of common methods to overcome this phenomenon uses the linear combination of the Kirchhoff–Helmholtz integral equation and its normal derivative. When solving the Neumann problem, this method is usually referred to as the Burton and Miller method. This method uses a coupling parameter which, theoretically, should be complex with nonvanishing imaginary part. In practice, it is usually chosen proportional or even equal to [Formula: see text]. A literature review of papers about the Burton and Miller method and its implementations revealed that, in some cases, it is better to use [Formula: see text] as coupling parameter. The better choice depends on the specific formulation, in particular, on the harmonic time dependence and on the fundamental solution or Green’s function, respectively. Surprisingly, an unexpectedly large number of studies is based on the wrong choice of the sign in the coupling parameter. Herein, it is described which sign of the coupling parameter should be used for different configurations. Furthermore, it will be shown that the wrong sign does not just make the solution process inefficient but can lead to completely wrong results in some cases.


1990 ◽  
Vol 112 (2) ◽  
pp. 257-262 ◽  
Author(s):  
S. Amini ◽  
Chen Ke ◽  
P. J. Harris

In this paper we study an efficient boundary element method for the determination of the acoustic field around arbitrary-shaped finite structures immersed in an infinite homogeneous acoustic medium. The direct boundary integral equation due to Burton and Miller is employed to overcome the nonuniqueness of solution associated with the classical boundary integral formulations of the exterior Helmholtz equation. The choice of the coupling parameter in the Burton and Miller formulation is discussed in order to minimize the condition number of the boundary integral equation. Numerical results are presented for the problem of acoustic radiation from several structures of practical interest.


Geophysics ◽  
1994 ◽  
Vol 59 (12) ◽  
pp. 1902-1910 ◽  
Author(s):  
Lasse Amundsen

The Kirchhoff‐Helmholtz formula for the wavefield inside a closed surface surrounding a volume is most commonly given as a surface integral over the field and its normal derivative, given the Green’s function of the problem. In this case the source point of the Green’s function, or the observation point, is located inside the volume enclosed by the surface. However, when locating the observation point outside the closed surface, the Kirchhoff‐Helmholtz formula constitutes a functional relationship between the field and its normal derivative on the surface, and thereby defines an integral equation for the fields. By dividing the closed surface into two parts, one being identical to the (infinite) data measurement surface and the other identical to the (infinite) surface onto which we want to extrapolate the data, the solution of the Kirchhoff‐Helmholtz integral equation mathematically gives exact inverse extrapolation of the field when constructing a Green’s function that generates either a null pressure field or a null normal gradient of the pressure field on the latter surface. In the case when the surfaces are plane and horizontal and the medium parameters are constant between the surfaces, analysis in the wavenumber domain shows that the Kirchhoff‐Helmholtz integral equation is equivalent to the Thomson‐Haskell acoustic propagator matrix method. When the medium parameters have smooth vertical gradients, the Kirchhoff‐Helmholtz integral equation in the high‐frequency approximation is equivalent to the WKBJ propagator matrix method, which also is equivalent to the extrapolation method denoted by extrapolation by analytic continuation.


Sign in / Sign up

Export Citation Format

Share Document