PLASMONIC FOCUSING BASED ON CdS NANORIBBON

2010 ◽  
Vol 19 (04) ◽  
pp. 729-735
Author(s):  
ZHEYU FANG ◽  
QI HONG ◽  
CHEN WANG ◽  
XING ZHU

In this paper, we propose and simulate the surface plasmon polariton nanofocusing process by using Finite-difference Time-domain (FDTD) method. The maximum enhancement factor at the taper end area is optimized with different wavelength of the excitation laser. With the advantage of SNOM, the SPP nanofocusing is experimentally observed by illuminating the tapered CdS nanoribbon deposited on the Ag film. The SPP dispersion is used to predict the optimal taper angles of the structure. As the emission of the focused SPP at the taper end, the proposed plasmonic structure can be severed as a light nanosource emitter in the future optical integrated circuits.

2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Sandip Swarnakar ◽  
Santosh Kumar ◽  
Sandeep Sharma

AbstractNow a day’s photonic crystals (PhCs) are in trends for designing of various integrated circuits like combinational and sequential circuits. The designing of all-optical half adder circuit based on beam interference principle, using T-shaped square lattice with silica dielectric rods in air background, is proposed. This design is a combination of two structures: one part of it works as AND gate and other part works as XOR gate. This structure is simulated using finite difference time domain (FDTD) method and verified numerically using PWE band solver and also using MATLAB.


2013 ◽  
Vol 284-287 ◽  
pp. 2876-2879
Author(s):  
Yih Bin Lin ◽  
Jen Hao Cheng ◽  
Rei Shin Chen ◽  
Ting Chung Yu ◽  
Ju Feng Liu ◽  
...  

A novel design of photonic crystal waveguide crossing based on multimode-interference (MMI) structure is proposed. Two structures of difference device lengths are simulated and studied. The proposed structures have high transmission efficiency for a wide bandwidth. The crosstalk is -26dB with device length of 12 lattice periods and -39dB with device length of 24 lattice periods. The plane wave expansion method and finite-difference time-domain method are used to calculate the modal dispersion curve and field propagation, respectively. The proposed MMI-based waveguide crossing has the potential to be practical in high-density optical integrated circuits.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250013 ◽  
Author(s):  
WILZUARD YONAN WISMANTO ◽  
RAHMAT HIDAYAT ◽  
MAY ON TJIA ◽  
YASUMASA FUJIWARA ◽  
KOJI MURATA ◽  
...  

We present the result of an experimental study on the photoluminescence of a thin layer of oxazine molecules doped into the poly(methyl methacrylate) (PMMA) matrix which is coated on top of sinusoidal silver grating. The surface plasmon polaritons that occur on the metallic grating surface were excited by a He-Ne laser of 633 nm wavelength. The effect of the grating was investigated by angle-resolved reflection and emission spectroscopy performed on the thin film samples with and without the grating. Incident light of both s- and p-polarizations were considered in this experiment and the measurement was performed in the reflection and the photoluminescence modes as well. The results exhibit remarkable resonant effect of photoluminescence enhancement over those observed from the sample with planar silver coating for both incident light polarizations. The much larger enhancement factor of ~50.0 found for the case of p-polarized light can be attributed to the combined contributions of surface plasmon polariton enhanced absorption of excitation light and the resonant coupling between the SPP and the fluorophore, while only the latter was operating in the case of s-polarized incident light which showed a smaller enhancement factor of 6.0.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Eng Leong Tan

The leapfrog schemes have been developed for unconditionally stable alternating-direction implicit (ADI) finite-difference time-domain (FDTD) method, and recently the complying-divergence implicit (CDI) FDTD method. In this paper, the formulations from time-collocated to leapfrog fundamental schemes are presented for ADI and CDI FDTD methods. For the ADI FDTD method, the time-collocated fundamental schemes are implemented using implicit E-E and E-H update procedures, which comprise simple and concise right-hand sides (RHS) in their update equations. From the fundamental implicit E-H scheme, the leapfrog ADI FDTD method is formulated in conventional form, whose RHS are simplified into the leapfrog fundamental scheme with reduced operations and improved efficiency. For the CDI FDTD method, the time-collocated fundamental scheme is presented based on locally one-dimensional (LOD) FDTD method with complying divergence. The formulations from time-collocated to leapfrog schemes are provided, which result in the leapfrog fundamental scheme for CDI FDTD method. Based on their fundamental forms, further insights are given into the relations of leapfrog fundamental schemes for ADI and CDI FDTD methods. The time-collocated fundamental schemes require considerably fewer operations than all conventional ADI, LOD and leapfrog ADI FDTD methods, while the leapfrog fundamental schemes for ADI and CDI FDTD methods constitute the most efficient implicit FDTD schemes to date.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Houxiao Wang ◽  
Wei Zhou ◽  
Er Ping Li ◽  
Rakesh Ganpat Mote

The butterfly-inspired 2D periodic tapered-staggered subwavelength gratings were developed mainly using finite difference time domain (FDTD) method, assisted by using focused ion beam (FIB) nanoscale machining or fabrication. The periodic subwavelength structures along the ridges of the designed gratings may change the electric field intensity distribution and weaken the surface reflection. The performance of the designed SiO2gratings is similar to that of the corresponding Si gratings (the predicted reflectance can be less than around 5% for the bandwidth ranging from 0.15 μm to 1 μm). Further, the antireflection performance of the designedx-unspaced gratings is better than that of the correspondingx-spaced gratings. Based on the FDTD designs and simulated results, the butterfly-inspired grating structure was fabricated on the silicon wafer using FIB milling, reporting the possibility to fabricate these FDTD-designed subwavelength grating structures.


Sign in / Sign up

Export Citation Format

Share Document