Multimode-Interference-Based Waveguide Crossing in Two-Dimensional Cubic Photonic Crystal

2013 ◽  
Vol 284-287 ◽  
pp. 2876-2879
Author(s):  
Yih Bin Lin ◽  
Jen Hao Cheng ◽  
Rei Shin Chen ◽  
Ting Chung Yu ◽  
Ju Feng Liu ◽  
...  

A novel design of photonic crystal waveguide crossing based on multimode-interference (MMI) structure is proposed. Two structures of difference device lengths are simulated and studied. The proposed structures have high transmission efficiency for a wide bandwidth. The crosstalk is -26dB with device length of 12 lattice periods and -39dB with device length of 24 lattice periods. The plane wave expansion method and finite-difference time-domain method are used to calculate the modal dispersion curve and field propagation, respectively. The proposed MMI-based waveguide crossing has the potential to be practical in high-density optical integrated circuits.

Author(s):  
Varsha Sharma ◽  
Vijay Laxmi Kalyani

In this paper we design a two dimensional (2-D) photonic crystal based biosensor implemented by linear waveguide and nanocavity detection in malaria. The bio molecules such as a red blood cell, infected red blood cell, trapped inside the nanocavity cause transmission shift at the output terminal.  The sensing mechanism of biosensor is change in refractive index of analytes. The layout biosensor is consists a linear waveguide with a nanocavity in square symmetry For the proposed photonic based biosensor, the band gap from 2210nm to 1420 nm and input wavelength of 1550nm are used in this design. The simulation results have analysed by using the finite difference time domain (FDTD) method, bandgap calculation is performed using plane wave expansion method.


Frequenz ◽  
2014 ◽  
Vol 68 (11-12) ◽  
Author(s):  
Mahdi Zavvari ◽  
Farhad Mehdizadeh

AbstractA novel design of optical filter based on photonic crystal structure is proposed in this paper. For designing the proposed filter we introduce an L3 resonant cavity between the input and output waveguides. We study the impact of different parameters on the filtering behavior of the structure using plane wave expansion and finite difference time domain methods. The initial form of this filter is capable of selecting the optical waves at λ = 1557.8 nm and the transmission efficiency of the filter is obtained about 84%. The total footprint of the filter is less than 205 μm


2019 ◽  
Vol 292 ◽  
pp. 02002
Author(s):  
Amel Labbani ◽  
MoumenisImene ◽  
Faiza Bounaas

In this paper a T-branch optical diplexer in two dimensional (2D) photonic crystal (PhC) to select two telecommunication wavelengths 1493.6nm and1553nm is investigated. In our design directional couplers (DC) and resonant cavity (RC) are utilized. A square lattice of silicon (Si) rods in air is used as fundamental structure. The coupling regions consist of three entire rows of decreased Si rods. Plane wave expansion method (PWE) and finite difference time domain (FDTD) method are utilized to analyze and simulate the characteristics of the designed device. The average transmission efficiency of our proposed diplexer is about 99.75%. High quality factor and extremely small crosstalk were achieved. The total size of the suggested design is 272.214 μm2, which is very suitable for nanotechnology based demultiplexing applications.


2013 ◽  
Vol 479-480 ◽  
pp. 133-136
Author(s):  
Yih Bin Lin ◽  
Rei Shin Chen ◽  
Ting Chung Yu ◽  
Ju Feng Liu

A novel design of photonic crystal waveguide crossing with taper structure is proposed. Simulations are performed by finite-difference time-domain method. The results show the proposed design has both high transmission and low cross talk characteristics. The transmission band and low cross talk band can be tuned to match each other by adjusting the taper structure..


2012 ◽  
Vol 26 (26) ◽  
pp. 1250170 ◽  
Author(s):  
TAO CHEN ◽  
CAILONG ZHENG ◽  
JINXING LI

We present a procedure to enhance the transmission efficiency of a photonic crystal slab waveguide bend by introducing an air hole with the same radius at the center of bend and optimizing the positions of three neighboring holes in the corner. The improvement relies only on the method of displacing holes which is technologically preferred to controlling variations in hole size or shape. We employ the effective refractive index approach and two-dimensional plane wave expansion method to analyze the guide modes of the straight waveguide and waveguide bend. The transmission character of bent waveguides is investigated using two-dimensional finite-difference time-domain method. Numerical studies demonstrate that the approximate method of mode analysis is unsuitable to our model. Alternatively, we systematically study the effect of different positions of the holes on the transmission. The optimized bends for the high transmission with broad bandwidth are proposed.


2014 ◽  
Vol 926-930 ◽  
pp. 415-418
Author(s):  
Yong Wan ◽  
Yue Guo ◽  
Jing Gao ◽  
Ming Hui Jia

Crescent scatterers possess the properties of anisotropy and multiple degrees of freedom. With plane-wave expansion method (PWE), the slow light effect with high ngand low dispersion can be achieved by optimizing the structure parameters of photonic crystal waveguide with line defect, such as changing the radius of two circles and center distance. Slow light with low dispersion can be obtained by these methods, which implies that choosing suitable scatterers and adjusting their parameters can efficiently achieve slow light with high ng and low dispersion.


2015 ◽  
Vol 44 (4) ◽  
pp. 423002
Author(s):  
王晶晶 WANG Jing-jing ◽  
欧阳征标 OUYANG Zheng-biao ◽  
文国华 WEN Guo-hua ◽  
黄浩 HUANG Hao ◽  
林密 LIN Mi ◽  
...  

Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 461 ◽  
Author(s):  
Mohammad Reza Jalali Azizpour ◽  
Mohammad Soroosh ◽  
Narges Dalvand ◽  
Yousef Seifi-Kavian

In this paper, an all-optical photonic crystal-based switch containing a graphene resonant ring has been presented. The structure has been composed of 15 × 15 silicon rods for a fundamental lattice. Then, a resonant ring including 9 thick silicon rods and 24 graphene-SiO2 rods was placed between two waveguides. The thick rods with a radius of 0.41a in the form of a 3 × 3 lattice were placed at the center of the ring. Graphene-SiO2 rods with a radius of 0.2a were assumed around the thick rods. These rods were made of the graphene monolayers which were separated by SiO2 disks. The size of the structure was about 70 µm2 that was more compact than other works. Furthermore, the rise and fall times were obtained by 0.3 ps and 0.4 ps, respectively, which were less than other reports. Besides, the amount of the contrast ratio (the difference between the margin values for logics 1 and 0) for the proposed structure was calculated by about 82%. The correct switching operation, compactness, and ultra-fast response, as well as the high contrast ratio, make the presented switch for optical integrated circuits.


2020 ◽  
Vol 557 (1) ◽  
pp. 92-97
Author(s):  
Sevket Simsek ◽  
Selami Palaz ◽  
Husnu Koc ◽  
Amirullah M. Mamedov ◽  
Ekmel Ozbay

In this work, we present an investigation of the optical properties and band structures for the photonic crystal structures (PCs) based on Sn2P2X6: X = S, Se) with Fibonacci superlattices. The optical properties of PCs can be tuned by varying structure parameters such as the lengths of poled domains, filling factor, and dispersion relation. In our simulation, we employed the finite-difference time domain technique and the plane wave expansion method, which implies the solution of Maxwell equations with centered finite-difference expressions for the space and time derivatives.


2007 ◽  
Vol 990 ◽  
Author(s):  
Khadijeh Bayat ◽  
Mahdi Farrokh Baroughi ◽  
Sujeet K. Chaudhuri ◽  
Safieddin Safavi-Naeini

ABSTRACTIn this paper, low temperature amorphous silicon oxynitride (a-SixOyNz:H) thin film technology is proposed for implementation of CMOS compatible photonic crystal (PC) based optical integrated circuits (OICs). The a-SixOyNz films of different refractive indices were developed by plasma enhanced chemical vapor deposition (PECVD) technique using silane, nitrous oxide, and ammonia as gas phase precursors at 300°C. The films with refractive index between 1.43 − 1.75 were obtained by changing gas flow ratios. Such thin films can be used as cladding and core layers in photonic crystal structure.The bandgap and guiding properties of the a-SixOyNz based PCs were simulated and was shown that the a-SixOyNz:H based PC technology offers larger feature sizes than a conventional silicon based photonic crystals.


Sign in / Sign up

Export Citation Format

Share Document