FROM THE IMPLIED VOLATILITY SKEW TO A ROBUST CORRECTION TO BLACK-SCHOLES AMERICAN OPTION PRICES

2001 ◽  
Vol 04 (04) ◽  
pp. 651-675 ◽  
Author(s):  
JEAN-PIERRE FOUQUE ◽  
GEORGE PAPANICOLAOU ◽  
K. RONNIE SIRCAR

We describe a robust correction to Black-Scholes American derivatives prices that accounts for uncertain and changing market volatility. It exploits the tendency of volatility to cluster, or fast mean-reversion, and is simply calibrated from the observed implied volatility skew. The two-dimensional free-boundary problem for the derivative pricing function under a stochastic volatility model is reduced to a one-dimensional free-boundary problem (the Black-Scholes price) plus the solution of a fixed boundary-value problem. The formal asymptotic calculation that achieves this is presented here. We discuss numerical implementation and analyze the effect of the volatility skew.

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1911
Author(s):  
Youngrok Lee ◽  
Yehun Kim ◽  
Jaesung Lee

The exotic options with curved nonlinear payoffs have been traded in financial markets, which offer great flexibility to participants in the market. Among them, power options with the payoff depending on a certain power of the underlying asset price are widely used in markets in order to provide high leverage strategy. In pricing power options, the classical Black–Scholes model which assumes a constant volatility is simple and easy to handle, but it has a limit in reflecting movements of real financial markets. As the alternatives of constant volatility, we focus on the stochastic volatility, finding more exact prices for power options. In this paper, we use the stochastic volatility model introduced by Schöbel and Zhu to drive the closed-form expressions for the prices of various power options including soft strike options. We also show the sensitivity of power option prices under changes in the values of each parameter by calculating the resulting values obtained from the formulas.


1999 ◽  
Vol 02 (04) ◽  
pp. 409-440 ◽  
Author(s):  
GEORGE J. JIANG

This paper conducts a thorough and detailed investigation on the implications of stochastic volatility and random jump on option prices. Both stochastic volatility and jump-diffusion processes admit asymmetric and fat-tailed distribution of asset returns and thus have similar impact on option prices compared to the Black–Scholes model. While the dynamic properties of stochastic volatility model are shown to have more impact on long-term options, the random jump is shown to have relatively larger impact on short-term near-the-money options. The misspecification risk of stochastic volatility as jump is minimal in terms of option pricing errors only when both the level of kurtosis of the underlying asset return distribution and the level of volatility persistence are low. While both asymmetric volatility and asymmetric jump can induce distortion of option pricing errors, the skewness of jump offers better explanations to empirical findings on implied volatility curves.


2001 ◽  
Vol 04 (01) ◽  
pp. 45-89 ◽  
Author(s):  
ROGER W. LEE

For asset prices that follow stochastic-volatility diffusions, we use asymptotic methods to investigate the behavior of the local volatilities and Black–Scholes volatilities implied by option prices, and to relate this behavior to the parameters of the stochastic volatility process. We also give applications, including risk-premium-based explanations of the biases in some naïve pricing and hedging schemes. We begin by reviewing option pricing under stochastic volatility and representing option prices and local volatilities in terms of expectations. In the case that fluctuations in price and volatility have zero correlation, the expectations formula shows that local volatility (like implied volatility) as a function of log-moneyness has the shape of a symmetric smile. In the case of non-zero correlation, we extend Sircar and Papanicolaou's asymptotic expansion of implied volatilities under slowly-varying stochastic volatility. An asymptotic expansion of local volatilities then verifies the rule of thumb that local volatility has the shape of a skew with roughly twice the slope of the implied volatility skew. Also we compare the slow-variation asymptotics against what we call small-variation asymptotics, and against Fouque, Papanicolaou, and Sircar's rapid-variation asymptotics. We apply the slow-variation asymptotics to approximate the biases of two naïve pricing strategies. These approximations shed some light on the signs and the relative magnitudes of the biases empirically observed in out-of-sample pricing tests of implied-volatility and local-volatility schemes. Similarly, we examine the biases of three different strategies for hedging under stochastic volatility, and we propose ways to implement these strategies without having to specify or estimate any particular stochastic volatility model. Our approximations suggest that a number of the empirical pricing and hedging biases may be explained by a positive premium for the portion of volatility risk that is uncorrelated with asset risk.


1998 ◽  
Vol 01 (02) ◽  
pp. 289-310 ◽  
Author(s):  
Yingzi Zhu ◽  
Marco Avellaneda

We construct a risk-neutral stochastic volatility model using no-arbitrage pricing principles. We then study the behavior of the implied volatility of options that are deep in and out of the money according to this model. The motivation of this study is to show the difference in the asymptotic behavior of the distribution tails between the usual Black–Scholes log-normal distribution and the risk-neutral stochastic volatility distribution. In the second part of the paper, we further explore this risk-neutral stochastic volatility model by a Monte-Carlo study on the implied volatility curve (implied volatility as a function of the option strikes) for near-the-money options. We study the behavior of this "smile" curve under different choices of parameter for the model, and determine how the shape and skewness of the "smile" curve is affected by the volatility of volatility ("V-vol") and the correlation between the underlying asset and its volatility.


2021 ◽  
Vol 63 ◽  
pp. 123-142
Author(s):  
Yuecai Han ◽  
Zheng Li ◽  
Chunyang Liu

We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Itô’s formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented. doi:10.1017/S1446181121000225


2016 ◽  
Vol 19 (02) ◽  
pp. 1650014 ◽  
Author(s):  
INDRANIL SENGUPTA

In this paper, a class of generalized Barndorff-Nielsen and Shephard (BN–S) models is investigated from the viewpoint of derivative asset analysis. Incompleteness of this type of markets is studied in terms of equivalent martingale measures (EMM). Variance process is studied in details for the case of Inverse-Gaussian distribution. Various structure preserving subclasses of EMMs are derived. The model is then effectively used for pricing European style options and fitting implied volatility smiles.


Sign in / Sign up

Export Citation Format

Share Document