Generalized frames for operators in Hilbert spaces

Author(s):  
Mohammad Sadegh Asgari ◽  
Hamidreza Rahimi

In this paper we present a family of analysis and synthesis systems of operators with frame-like properties for the range of a bounded operator on a separable Hilbert space. This family of operators is called a Θ–g-frame, where Θ is a bounded operator on a Hilbert space. Θ–g-frames are a generalization of g-frames, which allows to reconstruct elements from the range of Θ. In general, range of Θ is not a closed subspace. We also construct new Θ–g-frames by considering Θ–g-frames for its components. We further study Riesz decompositions for Hilbert spaces, which are a generalization of the notion of Riesz bases. We define the coefficient operators of a Riesz decomposition and we will show that these coefficient operators are continuous projections. We obtain some results about stability of Riesz decompositions under small perturbations.

2021 ◽  
Author(s):  
Dumitru Adam

Abstract In 1993, Alcantara-Bode showed ([2]) that Riemann Hypothesisholds if and only if the integral operator on the Hilbert space L2(0; 1)having the kernel function defined by the fractional part of (y/x), isinjective. Since then, the injectivity of the integral operator used inequivalent formulation of RH has not been addressed nor has beendissociated from RH.We provided in this paper methods for investigating the injectivityof linear bounded operators on separable Hilbert spaces using theirapproximations on dense families of subspaces.On the separable Hilbert space L2(0,1), an linear bounded operator(or its associated Hermitian), strict positive definite on a dense familyof including approximation subspaces in built on simple functions, isinjective if the rate of convergence of its sequence of injectivity pa-rameters on approximation subspaces is inferior bounded by a not nullconstant, that is the case with the Beurling - Alcantara-Bode integraloperator.We applied these methods to the integral operator used in RHequivalence proving its injectivity.


Author(s):  
UN CIG JI ◽  
KIMIAKI SAITÔ

In this paper we present a construction of an infinite dimensional separable Hilbert space associated with a norm induced from the Lévy trace. The space is slightly different from the Cesàro Hilbert space introduced in Ref. 1. The Lévy Laplacian is discussed with a suitable domain which is constructed by a rigging of Fock spaces based on a rigging of Hilbert spaces with the Lévy trace. Then the Lévy Laplacian can be considered as the Gross Laplacian acting on a certain countable Hilbert space. By constructing one-parameter group of operators of which the infinitesimal generator is the Lévy Laplacian, we study the existence and uniqueness of solution of heat equation associated with the Lévy Laplacian. Moreover we give an infinite dimensional stochastic process generated by the Lévy Laplacian.


Author(s):  
SIGRID HEINEKEN ◽  
EWA MATUSIAK ◽  
VICTORIA PATERNOSTRO

We consider perturbation of frames and frame sequences in a Hilbert space ℋ. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝd). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces.


A basic field is defined in the realm of a mathematical modeling platform that is based on a collection of floating platforms and an embedding platform. Each floating platform is represented by a quaternionic separable Hilbert space. The embedding platform is a non-separable Hilbert space. A basic field is a continuum eigenspace of an operator that resides in the non-separable embedding Hilbert space. The continuum can be described by a quaternionic function, and its behavior is described by quaternionic differential calculus. The separable Hilbert spaces contain the point-like artifacts that trigger the basic field. The floating platforms possess symmetry, which in combination with the background platform generates the sources of symmetry related fields.


2021 ◽  
Vol 2021 (1) ◽  
pp. 90-96
Author(s):  
Marcos S. Ferreira

Abstract In this paper we show that every conjugation C on the Hardy-Hilbert space H 2 is of type C = T * 𝒥T, where T is an unitary operator and 𝒥 f ( z ) = f ( z ¯ ) ¯ \mathcal{J}f\left( z \right) = \overline {f\left( {\bar z} \right)} with f ∈ H 2. Moreover we prove some relations of complex symmetry between the operators T and |T|, where T = U |T| is the polar decomposition of bounded operator T ∈ ℒ(ℋ) on the separable Hilbert space ℋ.


1986 ◽  
Vol 38 (5) ◽  
pp. 1135-1148 ◽  
Author(s):  
G. McDonald ◽  
C. Sundberg

Putnam showed in [5] that the spectrum of the real part of a bounded subnormal operator on a Hilbert space is precisely the projection of the spectrum of the operator onto the real line. (In fact he proved this more generally for bounded hyponormal operators.) We will show that this result can be extended to the class of unbounded subnormal operators with bounded real parts.Before proceeding we establish some notation. If T is a (not necessarily bounded) operator on a Hilbert space, then D(T) will denote its domain, and σ(T) its spectrum. For K a subspace of D(T), T|K will denote the restriction of T to K. Norms of bounded operators and elements in Hilbert spaces will be indicated by ‖ ‖. All Hilbert space inner products will be written 〈,〉. If W is a set in C, the closure of W will be written clos W, the topological boundary will be written bdy W, and the projection of W onto the real line will be written π(W),


Author(s):  
A. Källström ◽  
B. D. Sleeman

SynopsisConsider the multiparameter systemwhere ut is an element of a separable Hilbert space Hi, i = 1, …, n. The operators Sij are assumed to be bounded symmetric operators in Hi and Ai is assumed self-adjoint. In addition consider the operator equationwhere B is densely defined and closed in a separable Hilbert space H and Tj, j = 1, …, n is a bounded operator in H. The problem treated in this paper is to seek an expression for a solution v of (**) in terms of the eigenfunctions of the system (*).


2012 ◽  
Vol 04 (02) ◽  
pp. 237-253 ◽  
Author(s):  
ASUKA TAKATSU ◽  
TAKUMI YOKOTA

The aim of this paper is to obtain a better understanding of the geometric structure of quadratic Wasserstein spaces over separable Hilbert spaces. For this sake, we focus on their cone and product structures, and prove that the quadratic Wasserstein space over any separable Hilbert space has a cone structure and splits the underlying space isometrically but no more than that. These are shown in more general settings, and one of our main results is that the quadratic Wasserstein space over a Polish space has a cone structure if and only if so does the underlying space.


2002 ◽  
Vol 32 (3) ◽  
pp. 177-182 ◽  
Author(s):  
Binayak S. Choudhury

We construct a sequence of measurable functions and consider its convergence to the unique common random fixed point of two random operators defined on a nonempty closed subset of a separable Hilbert space. The corresponding result in the nonrandom case is also obtained.


Author(s):  
Z. L. Chen ◽  
H. X. Cao ◽  
Z. H. Guo

For Hilbert spaces [Formula: see text] and [Formula: see text], we use the notations [Formula: see text], [Formula: see text] and [Formula: see text] to denote the sets of all [Formula: see text]-Bessel sequences, [Formula: see text]-frames and Riesz bases in [Formula: see text] with respect to [Formula: see text], respectively. By defining a linear operation and a norm, we prove that [Formula: see text] becomes a Banach space and is isometrically isomorphic to the operator space [Formula: see text], where [Formula: see text]. In light of operator theory, it is proved that [Formula: see text] and [Formula: see text] are open sets in [Formula: see text]. This implies that both [Formula: see text]-frames and Riesz bases are stable under a small perturbation. By introducing a linear bijection [Formula: see text] from [Formula: see text] onto the [Formula: see text]-algebra [Formula: see text], a multiplication and an involution on the Banach space [Formula: see text] are defined so that [Formula: see text] becomes a unital [Formula: see text]-algebra that is isometrically isomorphic to the [Formula: see text]-algebra [Formula: see text], provided that [Formula: see text] and [Formula: see text] are isomorphic.


Sign in / Sign up

Export Citation Format

Share Document