PERTURBED FRAME SEQUENCES: CANONICAL DUAL SYSTEMS, APPROXIMATE RECONSTRUCTIONS AND APPLICATIONS

Author(s):  
SIGRID HEINEKEN ◽  
EWA MATUSIAK ◽  
VICTORIA PATERNOSTRO

We consider perturbation of frames and frame sequences in a Hilbert space ℋ. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝd). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces.

Author(s):  
Mohammad Sadegh Asgari ◽  
Hamidreza Rahimi

In this paper we present a family of analysis and synthesis systems of operators with frame-like properties for the range of a bounded operator on a separable Hilbert space. This family of operators is called a Θ–g-frame, where Θ is a bounded operator on a Hilbert space. Θ–g-frames are a generalization of g-frames, which allows to reconstruct elements from the range of Θ. In general, range of Θ is not a closed subspace. We also construct new Θ–g-frames by considering Θ–g-frames for its components. We further study Riesz decompositions for Hilbert spaces, which are a generalization of the notion of Riesz bases. We define the coefficient operators of a Riesz decomposition and we will show that these coefficient operators are continuous projections. We obtain some results about stability of Riesz decompositions under small perturbations.


Author(s):  
Joachim Toft ◽  
Anupam Gumber ◽  
Ramesh Manna ◽  
P. K. Ratnakumar

AbstractLet $$\mathcal H$$ H be a Hilbert space of distributions on $$\mathbf{R}^{d}$$ R d which contains at least one non-zero element of the Feichtinger algebra $$S_0$$ S 0 and is continuously embedded in $$\mathscr {D}'$$ D ′ . If $$\mathcal H$$ H is translation and modulation invariant, also in the sense of its norm, then we prove that $$\mathcal H= L^2$$ H = L 2 , with the same norm apart from a multiplicative constant.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sung-Sik Lee

Abstract Einstein’s theory of general relativity is based on the premise that the physical laws take the same form in all coordinate systems. However, it still presumes a preferred decomposition of the total kinematic Hilbert space into local kinematic Hilbert spaces. In this paper, we consider a theory of quantum gravity that does not come with a preferred partitioning of the kinematic Hilbert space. It is pointed out that, in such a theory, dimension, signature, topology and geometry of spacetime depend on how a collection of local clocks is chosen within the kinematic Hilbert space.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicola Arcozzi ◽  
Pavel Mozolyako ◽  
Karl-Mikael Perfekt ◽  
Stefan Richter ◽  
Giulia Sarfatti

AbstractWe study the reproducing kernel Hilbert space with kernel k


2008 ◽  
Vol 60 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Yves de Cornulier ◽  
Romain Tessera ◽  
Alain Valette

AbstractOur main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.


2015 ◽  
Vol 25 (3) ◽  
pp. 379-385
Author(s):  
Sandip Chatterjee ◽  
Rathindranath Mukherjee

In this paper we introduce the invex programming problem in Hilbert space. The requisite theory has been established to characterize the solution of such class of problems.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (1) ◽  
pp. 47-57
Author(s):  
Daraby Bayaz ◽  
Delzendeh Fataneh ◽  
Rahimi Asghar

We investigate Parseval's equality and define the fuzzy frame on Felbin fuzzy Hilbert spaces. We prove that C(Omega) (the vector space of all continuous functions on Omega) is normable in a Felbin fuzzy Hilbert space and so defining fuzzy frame on C(Omega) is possible. The consequences for the category of fuzzy frames in Felbin fuzzy Hilbert spaces are wider than for the category of the frames in the classical Hilbert spaces.


2012 ◽  
Vol 09 (02) ◽  
pp. 1260005 ◽  
Author(s):  
GIANNI CASSINELLI ◽  
PEKKA LAHTI

A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron–McLaren type. Our aim is to show how a theorem of M. Solér [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra23 (1995) 219–243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron–McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Solér's theorem in order to obtain a Hilbert space solution for the coordinatization problem.


Sign in / Sign up

Export Citation Format

Share Document