scholarly journals Schur–Weyl duality and the product of randomly-rotated symmetries by a unitary Brownian motion

Author(s):  
Nizar Demni ◽  
Tarek Hamdi

In this paper, we introduce and study a unitary matrix-valued process which is closely related to the Hermitian matrix-Jacobi process. It is precisely defined as the product of a deterministic self-adjoint symmetry and a randomly-rotated one by a unitary Brownian motion. Using stochastic calculus and the action of the symmetric group on tensor powers, we derive an ordinary differential equation for the moments of its fixed-time marginals. Next, we derive an expression of these moments which involves a unitary bridge between our unitary process and another independent unitary Brownian motion. This bridge motivates and allows to write a second direct proof of the obtained moment expression.

2019 ◽  
pp. 1-31
Author(s):  
YUZURU INAHAMA ◽  
NOBUAKI NAGANUMA

We study a rough differential equation driven by fractional Brownian motion with Hurst parameter $H$ $(1/4<H\leqslant 1/2)$ . Under Hörmander’s condition on the coefficient vector fields, the solution has a smooth density for each fixed time. Using Watanabe’s distributional Malliavin calculus, we obtain a short time full asymptotic expansion of the density under quite natural assumptions. Our main result can be regarded as a “fractional version” of Ben Arous’ famous work on the off-diagonal asymptotics.


2020 ◽  
Vol 28 (3) ◽  
pp. 183-196
Author(s):  
Kouacou Tanoh ◽  
Modeste N’zi ◽  
Armel Fabrice Yodé

AbstractWe are interested in bounds on the large deviations probability and Berry–Esseen type inequalities for maximum likelihood estimator and Bayes estimator of the parameter appearing linearly in the drift of nonhomogeneous stochastic differential equation driven by fractional Brownian motion.


1998 ◽  
Vol 35 (04) ◽  
pp. 856-872 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peskir

Explicit formulas are found for the payoff and the optimal stopping strategy of the optimal stopping problem supτ E (max0≤t≤τ X t − c τ), where X = (X t ) t≥0 is geometric Brownian motion with drift μ and volatility σ &gt; 0, and the supremum is taken over all stopping times for X. The payoff is shown to be finite, if and only if μ &lt; 0. The optimal stopping time is given by τ* = inf {t &gt; 0 | X t = g * (max0≤t≤s X s )} where s ↦ g *(s) is the maximal solution of the (nonlinear) differential equation under the condition 0 &lt; g(s) &lt; s, where Δ = 1 − 2μ / σ2 and K = Δ σ2 / 2c. The estimate is established g *(s) ∼ ((Δ − 1) / K Δ)1 / Δ s 1−1/Δ as s → ∞. Applying these results we prove the following maximal inequality: where τ may be any stopping time for X. This extends the well-known identity E (sup t&gt;0 X t ) = 1 − (σ 2 / 2 μ) and is shown to be sharp. The method of proof relies upon a smooth pasting guess (for the Stephan problem with moving boundary) and the Itô–Tanaka formula (being applied two-dimensionally). The key point and main novelty in our approach is the maximality principle for the moving boundary (the optimal stopping boundary is the maximal solution of the differential equation obtained by a smooth pasting guess). We think that this principle is by itself of theoretical and practical interest.


Author(s):  
Francesca Biagini ◽  
Yaozhong Hu ◽  
Bernt Øksendal ◽  
Tusheng Zhang

Sign in / Sign up

Export Citation Format

Share Document