Lp-Theory for the fractional time stochastic heat equation with an infinite-dimensional fractional Brownian motion

Author(s):  
Jingqi Han ◽  
Litan Yan

In this paper, we study the [Formula: see text]-theory of the fractional time stochastic heat equation [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text] denotes the Caputo derivative of order [Formula: see text], and [Formula: see text] is a sequence of i.i.d. fractional Brownian motions with a same Hurst index [Formula: see text]. The integral with respect to fractional Brownian motion is the Skorohod integral. By using the Malliavin calculus techniques and fractional calculus, we obtain a generalized Littlewood–Paley inequality, and prove the existence and uniqueness of [Formula: see text]-solution to such equation.

Author(s):  
Yi Chen ◽  
Jing Dong ◽  
Hao Ni

Consider a fractional Brownian motion (fBM) [Formula: see text] with Hurst index [Formula: see text]. We construct a probability space supporting both BH and a fully simulatable process [Formula: see text] such that[Formula: see text] with probability one for any user-specified error bound [Formula: see text]. When [Formula: see text], we further enhance our error guarantee to the α-Hölder norm for any [Formula: see text]. This enables us to extend our algorithm to the simulation of fBM-driven stochastic differential equations [Formula: see text]. Under mild regularity conditions on the drift and diffusion coefficients of Y, we construct a probability space supporting both Y and a fully simulatable process [Formula: see text] such that[Formula: see text] with probability one. Our algorithms enjoy the tolerance-enforcement feature, under which the error bounds can be updated sequentially in an efficient way. Thus, the algorithms can be readily combined with other advanced simulation techniques to estimate the expectations of functionals of fBMs efficiently.


2015 ◽  
Vol 23 (3) ◽  
Author(s):  
Solesne Bourguin ◽  
Ciprian A. Tudor

AbstractWe study the law of the solution to the stochastic heat equation with additive Gaussian noise which behaves as the fractional Brownian motion in time and is white in space. We prove a decomposition of the solution in terms of the bifractional Brownian motion. Our result is an extension of a result by Swanson.


2018 ◽  
Vol 70 (1) ◽  
pp. 1-6 ◽  
Author(s):  
B.L.S. Prakasa Rao

It has been observed that the stock price process can be modelled with driving force as a mixed fractional Brownian motion (mfBm) with Hurst index [Formula: see text] whenever long-range dependence is possibly present. We propose a geometric mfBm model for the stock price process with possible jumps superimposed by an independent Poisson process.


2021 ◽  
pp. 2150052
Author(s):  
Qiyong Cao ◽  
Hongjun Gao

In this paper, we concern the fourth parabolic model on [Formula: see text] driven by a multiplicative Gaussian noise which behaves like fractional Brownian motion in time and space with Hurst index [Formula: see text] and [Formula: see text], respectively. The existence and uniqueness of mild solution in Skorohod sense are proved, and the weak intermittency is obtained by estimating [Formula: see text]th ([Formula: see text]) moment of the solution. Moreover, the Hölder continuity can be obtained for the time and space variable.


2020 ◽  
Vol 72 (9) ◽  
pp. 1195-1231
Author(s):  
V. Konarovskyi

UDC 519.21 We prove the existence of a sticky-reflected solution to the heat equation on the spatial interval driven by colored noise. The process can be interpreted as an infinite-dimensional analog of the sticky-reflected Brownian motion on the real line, but now the solution obeys the usual stochastic heat equation except for points where it reaches zero. The solution has no noise at zero and a drift pushes it to stay positive. The proof is based on a new approach that can also be applied to other types of SPDEs with discontinuous coefficients.


2014 ◽  
Vol 51 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Dawei Hong ◽  
Shushuang Man ◽  
Jean-Camille Birget ◽  
Desmond S. Lun

We construct a wavelet-based almost-sure uniform approximation of fractional Brownian motion (FBM) (Bt(H))_t∈[0,1] of Hurst index H ∈ (0, 1). Our results show that, by Haar wavelets which merely have one vanishing moment, an almost-sure uniform expansion of FBM for H ∈ (0, 1) can be established. The convergence rate of our approximation is derived. We also describe a parallel algorithm that generates sample paths of an FBM efficiently.


Sign in / Sign up

Export Citation Format

Share Document