High order Anderson parabolic model driven by rough noise in space

2021 ◽  
pp. 2150052
Author(s):  
Qiyong Cao ◽  
Hongjun Gao

In this paper, we concern the fourth parabolic model on [Formula: see text] driven by a multiplicative Gaussian noise which behaves like fractional Brownian motion in time and space with Hurst index [Formula: see text] and [Formula: see text], respectively. The existence and uniqueness of mild solution in Skorohod sense are proved, and the weak intermittency is obtained by estimating [Formula: see text]th ([Formula: see text]) moment of the solution. Moreover, the Hölder continuity can be obtained for the time and space variable.

Author(s):  
Yi Chen ◽  
Jing Dong ◽  
Hao Ni

Consider a fractional Brownian motion (fBM) [Formula: see text] with Hurst index [Formula: see text]. We construct a probability space supporting both BH and a fully simulatable process [Formula: see text] such that[Formula: see text] with probability one for any user-specified error bound [Formula: see text]. When [Formula: see text], we further enhance our error guarantee to the α-Hölder norm for any [Formula: see text]. This enables us to extend our algorithm to the simulation of fBM-driven stochastic differential equations [Formula: see text]. Under mild regularity conditions on the drift and diffusion coefficients of Y, we construct a probability space supporting both Y and a fully simulatable process [Formula: see text] such that[Formula: see text] with probability one. Our algorithms enjoy the tolerance-enforcement feature, under which the error bounds can be updated sequentially in an efficient way. Thus, the algorithms can be readily combined with other advanced simulation techniques to estimate the expectations of functionals of fBMs efficiently.


Author(s):  
Jingqi Han ◽  
Litan Yan

In this paper, we study the [Formula: see text]-theory of the fractional time stochastic heat equation [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text] denotes the Caputo derivative of order [Formula: see text], and [Formula: see text] is a sequence of i.i.d. fractional Brownian motions with a same Hurst index [Formula: see text]. The integral with respect to fractional Brownian motion is the Skorohod integral. By using the Malliavin calculus techniques and fractional calculus, we obtain a generalized Littlewood–Paley inequality, and prove the existence and uniqueness of [Formula: see text]-solution to such equation.


2018 ◽  
Vol 70 (1) ◽  
pp. 1-6 ◽  
Author(s):  
B.L.S. Prakasa Rao

It has been observed that the stock price process can be modelled with driving force as a mixed fractional Brownian motion (mfBm) with Hurst index [Formula: see text] whenever long-range dependence is possibly present. We propose a geometric mfBm model for the stock price process with possible jumps superimposed by an independent Poisson process.


2014 ◽  
Vol 51 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Dawei Hong ◽  
Shushuang Man ◽  
Jean-Camille Birget ◽  
Desmond S. Lun

We construct a wavelet-based almost-sure uniform approximation of fractional Brownian motion (FBM) (Bt(H))_t∈[0,1] of Hurst index H ∈ (0, 1). Our results show that, by Haar wavelets which merely have one vanishing moment, an almost-sure uniform expansion of FBM for H ∈ (0, 1) can be established. The convergence rate of our approximation is derived. We also describe a parallel algorithm that generates sample paths of an FBM efficiently.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


2017 ◽  
Vol 54 (2) ◽  
pp. 444-461 ◽  
Author(s):  
Fangjun Xu

Abstract We prove a second-order limit law for additive functionals of a d-dimensional fractional Brownian motion with Hurst index H = 1 / d, using the method of moments and extending the Kallianpur–Robbins law, and then give a functional version of this result. That is, we generalize it to the convergence of the finite-dimensional distributions for corresponding stochastic processes.


2022 ◽  
Vol 9 ◽  
Author(s):  
Han Gao ◽  
Rui Guo ◽  
Yang Jin ◽  
Litan Yan

Let SH be a sub-fractional Brownian motion with index 12<H<1. In this paper, we consider the linear self-interacting diffusion driven by SH, which is the solution to the equationdXtH=dStH−θ(∫0tXtH−XsHds)dt+νdt,X0H=0,where θ &lt; 0 and ν∈R are two parameters. Such process XH is called self-repelling and it is an analogue of the linear self-attracting diffusion [Cranston and Le Jan, Math. Ann. 303 (1995), 87–93]. Our main aim is to study the large time behaviors. We show the solution XH diverges to infinity, as t tends to infinity, and obtain the speed at which the process XH diverges to infinity as t tends to infinity.


2019 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Eric Djeutcha ◽  
Didier Alain Njamen Njomen ◽  
Louis-Aimé Fono

This study deals with the arbitrage problem on the financial market when the underlying asset follows a mixed fractional Brownian motion. We prove the existence and uniqueness theorem for the mixed geometric fractional Brownian motion equation. The semi-martingale approximation approach to mixed fractional Brownian motion is used to eliminate the arbitrage opportunities.


Sign in / Sign up

Export Citation Format

Share Document