REVERSE MATHEMATICS OF MF SPACES

2006 ◽  
Vol 06 (02) ◽  
pp. 203-232 ◽  
Author(s):  
CARL MUMMERT

This paper gives a formalization of general topology in second-order arithmetic using countably based MF spaces. This formalization is used to study the reverse mathematics of general topology. For each poset P we let MF (P) denote the set of maximal filters on P endowed with the topology generated by {Np | p ∈ P}, where Np = {F ∈ MF (P) | p ∈ F}. We define a countably based MF space to be a space of the form MF (P) for some countable poset P. The class of countably based MF spaces includes all complete separable metric spaces as well as many nonmetrizable spaces. The following reverse mathematics results are obtained. The proposition that every nonempty Gδ subset of a countably based MF space is homeomorphic to a countably based MF space is equivalent to [Formula: see text] over ACA0. The proposition that every uncountable closed subset of a countably based MF space contains a perfect set is equivalent over [Formula: see text] to the proposition that [Formula: see text] is countable for all A ⊆ ℕ. The proposition that every regular countably based MF space is homeomorphic to a complete separable metric space is equivalent to [Formula: see text] over [Formula: see text].

2005 ◽  
Vol 11 (4) ◽  
pp. 526-533 ◽  
Author(s):  
Carl Mummert ◽  
Stephen G. Simpson

AbstractWe initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π12 comprehension. An MF space is defined to be a topological space of the form MF(P) with the topology generated by {Np ∣ p ϵ P}. Here P is a poset, MF(P) is the set of maximal filters on P, and Np = {F ϵ MF(P) ∣ p ϵ F }. If the poset P is countable, the space MF(P) is said to be countably based. The class of countably based MF spaces can be defined and discussed within the subsystem ACA0 of second order arithmetic. One can prove within ACA0 that every complete separable metric space is homeomorphic to a countably based MF space which is regular. We show that the converse statement, “every countably based MF space which is regular is homeomorphic to a complete separable metric space,” is equivalent to . The equivalence is proved in the weaker system . This is the first example of a theorem of core mathematics which is provable in second order arithmetic and implies Π12 comprehension.


2000 ◽  
Vol 65 (3) ◽  
pp. 1451-1480 ◽  
Author(s):  
Mariagnese Giusto ◽  
Stephen G. Simpson

AbstractLet X be a compact metric space. A closed set K ⊆ X is located if the distance function d(x, K) exists as a continuous real-valued function on X; weakly located if the predicate d(x, K) > r is allowing parameters. The purpose of this paper is to explore the concepts of located and weakly located subsets of a compact separable metric space in the context of subsystems of second order arithmetic such as RCA0, WKL0 and ACA0. We also give some applications of these concepts by discussing some versions of the Tietze extension theorem. In particular we prove an RCA0 version of this result for weakly located closed sets.


1996 ◽  
Vol 61 (2) ◽  
pp. 697-699
Author(s):  
Jörg Hudelmaier

1980 ◽  
Vol 23 (1) ◽  
pp. 1-9
Author(s):  
Richard Willmott

The classical theorem that a complete separable metric space is the image under a one-to-one continuous function of a closed subset of the irrational numbers has been extended in two directions, the first leading to various characterizations in descriptive set theory of Borel and analytic sets or generalizations of them as continuous images of certain subsets of the irrationals, or generalizations of them (see, e.g. [3] and references cited there; [4]; [6]). The second direction originates in the observation that a closed subset of the irrationals is a complete 0-dimensional metric space (under a suitable metric), and leads to the general question asked by Alexandroff [1], "Which spaces can be represented as images of 'nice' (e.g. metric, 0-dimensional) spaces under 'nice' [e.g. one-to-one, open, closed, perfect] continuous mappings?" (See, e.g. [7], [9] and the survey articles [1], [2] and [11].)


2009 ◽  
Vol 50 ◽  
Author(s):  
Rimas Banys

A complete separable metric space of functions defined on the positive quadrant of the plane is constructed. The characteristic property of these functions is that at every point x there exist two lines intersecting at this point such that limits limy→x f (y) exist when y approaches x along any path not intersecting these lines. A criterion of compactness of subsets of this space is obtained.


2010 ◽  
Vol 16 (3) ◽  
pp. 378-402 ◽  
Author(s):  
Richard A. Shore

AbstractThis paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main systems of reverse mathematics. While retaining the usual base theory and working still within second order arithmetic, theorems are described that range from those far below the usual systems to ones far above.


2017 ◽  
Vol 5 (1) ◽  
pp. 138-151 ◽  
Author(s):  
David Bryant ◽  
André Nies ◽  
Paul Tupper

AbstractThe Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space. The Urysohn space is uniquely determined up to isometry within separable metric spaces by these two properties. We introduce an analogue of the Urysohn space for diversities, a recently developed variant of the concept of a metric space. In a diversity any finite set of points is assigned a non-negative value, extending the notion of a metric which only applies to unordered pairs of points.We construct the unique separable complete diversity that it is ultrahomogeneous and universal with respect to separable diversities.


2011 ◽  
Vol 48 (2) ◽  
pp. 145-159
Author(s):  
Zhaowen Li ◽  
Xun Ge ◽  
Qingguo Li

In this paper, we prove that a space X is a weak-open compact image of a locally separable metric space if and only if X has a uniform cosmic-weak-base if and only if X is a weak-open compact image of a metric space and a locally cosmic space, and give some internal characterizations of weak-open s-images of locally separable metric spaces.


1974 ◽  
Vol 75 (2) ◽  
pp. 193-197 ◽  
Author(s):  
A. J. Ostaszewski

AbstractA theorem of Besicovitch, namely that, assuming the continuum hypothesis, there exists in any uncountable complete separable metric space a set of cardinality the continuum all of whose Hausdorif h-measures are zero, is here deduced by appeal to Martin's Axiom. It is also shown that for measures λ of Hausdorff type the union of fewer than 2ℵ0 sets of λ-measure zero is also of λ-measure zero; furthermore, the union of fewer than 2ℵ0 λ-measurable sets is λ-measurable.


Sign in / Sign up

Export Citation Format

Share Document