scholarly journals The domination monoid in o-minimal theories

Author(s):  
Rosario Mennuni

We study the monoid of global invariant types modulo domination-equivalence in the context of o-minimal theories. We reduce its computation to the problem of proving that it is generated by classes of [Formula: see text]-types. We show this to hold in Real Closed Fields, where generators of this monoid correspond to invariant convex subrings of the monster model. Combined with [C. Ealy, D. Haskell and J. Maríková, Residue field domination in real closed valued fields, Notre Dame J. Formal Logic 60(3) (2019) 333–351], this allows us to compute the domination monoid in the weakly o-minimal theory of Real Closed Valued Fields.

1997 ◽  
Vol 62 (1) ◽  
pp. 14-34 ◽  
Author(s):  
Lou van den Dries

I solve here some problems left open in “T-convexity and Tame Extensions” [9]. Familiarity with [9] is assumed, and I will freely use its notations. In particular, T will denote a complete o-minimal theory extending RCF, the theory of real closed fields. Let (, V) ⊨ Tconvex, let = V/m(V) be the residue field, with residue class map x ↦ : V ↦ , and let υ: → Γ be the associated valuation. “Definable” will mean “definable with parameters”. The main goal of this article is to determine the structure induced by (, V) on its residue fieldand on its value group Γ. In [9] we expanded the ordered field to a model of T as follows. Take a tame elementary substructure ′ of such that R′ ⊆ V and R′ maps bijectively onto under the residue class map, and make this bijection into an isomorphism ′ ≌ of T-models. (We showed such ′ exists, and that this gives an expansion of to a T-model that is independent of the choice of ′.).


1986 ◽  
Vol 51 (1) ◽  
pp. 63-74 ◽  
Author(s):  
David Marker

Let L be a first order language containing a binary relation symbol <.Definition. Suppose ℳ is an L-structure and < is a total ordering of the domain of ℳ. ℳ is ordered minimal (-minimal) if and only if any parametrically definable X ⊆ ℳ can be represented as a finite union of points and intervals with endpoints in ℳ.In any ordered structure every finite union of points and intervals is definable. Thus the -minimal structures are the ones with no unnecessary definable sets. If T is a complete L-theory we say that T is strongly (-minimal if and only if every model of T is -minimal.The theory of real closed fields is the canonical example of a strongly -minimal theory. Strongly -minimal theories were introduced (in a less general guise which we discuss in §6) by van den Dries in [1]. Extending van den Dries' work, Pillay and Steinhorn (see [3], [4] and [2]) developed an extensive structure theory for definable sets in strongly -minimal theories, generalizing the results for real closed fields. They also established several striking analogies between strongly -minimal theories and ω-stable theories (most notably the existence and uniqueness of prime models). In this paper we will examine the construction of models of strongly -minimal theories emphasizing the problems involved in realizing and omitting types. Among other things we will prove that the Hanf number for omitting types for a strongly -minimal theory T is at most (2∣T∣)+, and characterize the strongly -minimal theories with models order isomorphic to (R, <).


1995 ◽  
Vol 60 (1) ◽  
pp. 74-102 ◽  
Author(s):  
Lou van den Dries ◽  
Adam H. Lewenberg

AbstractLet T be a complete o-minimal extension of the theory of real closed fields. We characterize the convex hulls of elementary substructures of models of T and show that the residue field of such a convex hull has a natural expansion to a model of T. We give a quantifier elimination relative to T for the theory of pairs (ℛ, V) where ℛ ⊨ T and V ≠ ℛ is the convex hull of an elementary substructure of ℛ. We deduce that the theory of such pairs is complete and weakly o-minimal. We also give a quantifier elimination relative to T for the theory of pairs with ℛ a model of T and a proper elementary substructure that is Dedekind complete in ℛ. We deduce that the theory of such “tame” pairs is complete.


1988 ◽  
Vol 53 (1) ◽  
pp. 146-159 ◽  
Author(s):  
Laura L. Mayer

The notion of o-minimality was formulated by Pillay and Steinhorn [PS] building on work of van den Dries [D]. Roughly speaking, a theory T is o-minimal if whenever M is a model of T then M is linearly ordered and every definable subset of the universe of M consists of finitely many intervals and points. The theory of real closed fields is an example of an o-minimal theory.We examine the structure of the countable models for T, T an arbitrary o-minimal theory (in a countable language). We completely characterize these models, provided that T does not have 2ω countable models. This proviso (viz. that T has fewer than 2ω countable models) is in the tradition of classification theory: given a cardinal α, if T has the maximum possible number of models of size α, i.e. 2α, then no structure theorem is expected (cf. [Sh1]).O-minimality is introduced in §1. §1 also contains conventions and definitions, including the definitions of cut and noncut. Cuts and noncuts constitute the nonisolated types over a set.In §2 we study a notion of independence for sets of nonisolated types and the corresponding notion of dimension.In §3 we define what it means for a nonisolated type to be simple. Such types generalize the so-called “components” in Pillay and Steinhorn's analysis of ω-categorical o-minimal theories [PS]. We show that if there is a nonisolated type which is not simple then T has 2ω countable models.


Author(s):  
Wojciech Kucharz ◽  
Krzysztof Kurdyka ◽  
Ali El‐Siblani

1996 ◽  
Vol 28 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Margarita Otero ◽  
Ya'acov Peterzil ◽  
Anand Pillay

2007 ◽  
Vol 72 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Ehud Hrushovski ◽  
Ya'acov Peterzil

AbstractWe use a new construction of an o-minimal structure, due to Lipshitz and Robinson, to answer a question of van den Dries regarding the relationship between arbitrary o-minimal expansions of real closed fields and structures over the real numbers. We write a first order sentence which is true in the Lipshitz-Robinson structure but fails in any possible interpretation over the field of real numbers.


1996 ◽  
Vol 61 (4) ◽  
pp. 1121-1152 ◽  
Author(s):  
Françoise Delon ◽  
Rafel Farré

AbstractWe study the model theory of fields k carrying a henselian valuation with real closed residue field. We give a criteria for elementary equivalence and elementary inclusion of such fields involving the value group of a not necessarily definable valuation. This allows us to translate theories of such fields to theories of ordered abelian groups, and we study the properties of this translation. We also characterize the first-order definable convex subgroups of a given ordered abelian group and prove that the definable real valuation rings of k are in correspondence with the definable convex subgroups of the value group of a certain real valuation of k.


Sign in / Sign up

Export Citation Format

Share Document