Existence of Equilibrium Points for Bimatrix Game with Interval Payoffs

2016 ◽  
Vol 18 (01) ◽  
pp. 1650002
Author(s):  
Ajay Kumar Bhurjee

This paper deals a bimatrix game with payoffs as closed intervals. Existence of equilibrium point of this game is discussed by using suitable interval quadratic programming problem. Further, a methodology is proposed for finding optimal strategies for each player of the game. The methodology is illustrated by numerical example.

2021 ◽  
Author(s):  
Resmawan Resmawan ◽  
Agusyarif Rezka Nuha ◽  
Lailany Yahya

This paper discusses the dynamics of COVID-19 transmission by involving quarantine interventions. The model was constructed by involving three classes of infectious causes, namely the exposed human class, asymptotically infected human class, and symptomatic infected human class. Variables were representing quarantine interventions to suppress infection growth were also considered in the model. Furthermore, model analysis is focused on the existence of equilibrium points and numerical simulations to visually showed population dynamics. The constructed model forms the SEAQIR model which has two equilibrium points, namely a disease-free equilibrium point and an endemic equilibrium point. The stability analysis showed that the disease-free equilibrium point was locally asymptotically stable at R0<1 and unstable at R0>1. Numerical simulations showed that increasing interventions in the form of quarantine could contribute to slowing the transmission of COVID-19 so that it is hoped that it can prevent outbreaks in the population.


2021 ◽  
Vol 47 ◽  
Author(s):  
Sigutė Vakrinienė ◽  
Daina Sudžiūtė

The methods for finding Nash equilibrium in bimatrix game are introduced in this paper.  Linear optimization model with binary variables for coputation of all equilibrium points in nongenerate bimatrix game is proposed.


2021 ◽  
Vol 3 (1) ◽  
pp. 66-79
Author(s):  
Resmawan Resmawan ◽  
Agusyarif Rezka Nuha ◽  
Lailany Yahya

ABSTRAKMakalah ini membahas dinamika transmisi COVID-19 dengan melibatkan intervensi karantina. Model dikonstruksi dengan melibatkan tiga kelas penyebab infeksi, yaitu kelas manusia terpapar, kelas manusia terinfeksi tanpa gejala klinis, dan kelas manusia terinfeksi disertai gejala klinis. Variabel yang merepresentasikan intervensi karantina untuk menekan pertumbuhan infeksi juga dipertimbangkan pada model. Selanjutnya, analisis model difokuskan pada eksistensi titik kesetimbangan dan simulasi numerik untuk menunjukkan dinamika populasi secara visual. Model yang dikonstruksi membentuk model SEAQIR yang memiliki dua titik kesetimbangan, yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Analisis kestabilan menunjukkan bahwa titik kesetimbangan bebas penyakit bersifat stabil asimtotik lokal pada saat R01 dan tidak stabil pada saat R01. Simulasi numerik menunjukkan bahwa peningkatan intervensi berupa karantina dapat berkontribusi memperlambat transmisi COVID-19 sehingga diharapkan dapat mencegah terjadinya wabah pada populasi.ABSTRACTThis paper discusses the dynamics of COVID-19 transmission by involving quarantine interventions. The model was constructed by involving three classes of infectious causes, namely the exposed human class, asymptotically infected human class, and symptomatic infected human class. Variables were representing quarantine interventions to suppress infection growth were also considered in the model. Furthermore, model analysis is focused on the existence of equilibrium points and numerical simulations to visually showed population dynamics. The constructed model forms the SEAQIR model which has two equilibrium points, namely a disease-free equilibrium point and an endemic equilibrium point. The stability analysis showed that the disease-free equilibrium point was locally asymptotically stable at R01 and unstable at R01. Numerical simulations showed that increasing interventions in the form of quarantine could contribute to slowing the transmission of COVID-19 so that it is hoped that it can prevent outbreaks in the population.


2009 ◽  
Vol 02 (03) ◽  
pp. 287-297 ◽  
Author(s):  
ZIXIN LIU ◽  
SHU LÜ ◽  
SHOUMING ZHONG

In this paper, a class of interval projection neural networks for solving quadratic programming problems are investigated. By using Gronwall inequality and constructing appropriate Lyapunov functionals, several novel conditions are derived to guarantee the exponential stability of the equilibrium point. Compared with previous results, the conclusions obtained here are suitable not only to convex quadratic programming problems but also to degenerate quadratic programming problems, and the conditions are more weaker than the earlier results reported in the literature. In addition, one numerical example is discussed to illustrate the validity of the main results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. Elsisy ◽  
D. A. Hammad ◽  
M. A. El-Shorbagy

In this paper, we present a new approach which is based on using numerical solutions and swarm algorithms (SAs) to solve the interval quadratic programming problem (IQPP). We use numerical solutions for SA to improve its performance. Our approach replaced all intervals in IQPP by additional variables. This new form is called the modified quadratic programming problem (MQPP). The Karush–Kuhn–Tucker (KKT) conditions for MQPP are obtained and solved by the numerical method to get solutions. These solutions are functions in the additional variables. Also, they provide the boundaries of the basic variables which are used as a start point for SAs. Chaotic particle swarm optimization (CPSO) and chaotic firefly algorithm (CFA) are presented. In addition, we use the solution of dual MQPP to improve the behavior and as a stopping criterion for SAs. Finally, the comparison and relations between numerical solutions and SAs are shown in some well-known examples.


2021 ◽  
Vol 1 (1) ◽  
pp. 66-79
Author(s):  
Resmawan Resmawan ◽  
Agusyarif Rezka Nuha ◽  
Lailany Yahya

ABSTRAKMakalah ini membahas dinamika transmisi COVID-19 dengan melibatkan intervensi karantina. Model dikonstruksi dengan melibatkan tiga kelas penyebab infeksi, yaitu kelas manusia terpapar, kelas manusia terinfeksi tanpa gejala klinis, dan kelas manusia terinfeksi disertai gejala klinis. Variabel yang merepresentasikan intervensi karantina untuk menekan pertumbuhan infeksi juga dipertimbangkan pada model. Selanjutnya, analisis model difokuskan pada eksistensi titik kesetimbangan dan simulasi numerik untuk menunjukkan dinamika populasi secara visual. Model yang dikonstruksi membentuk model SEAQIR yang memiliki dua titik kesetimbangan, yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Analisis kestabilan menunjukkan bahwa titik kesetimbangan bebas penyakit bersifat stabil asimtotik lokal pada saat R01 dan tidak stabil pada saat R01. Simulasi numerik menunjukkan bahwa peningkatan intervensi berupa karantina dapat berkontribusi memperlambat transmisi COVID-19 sehingga diharapkan dapat mencegah terjadinya wabah pada populasi.ABSTRACTThis paper discusses the dynamics of COVID-19 transmission by involving quarantine interventions. The model was constructed by involving three classes of infectious causes, namely the exposed human class, asymptotically infected human class, and symptomatic infected human class. Variables were representing quarantine interventions to suppress infection growth were also considered in the model. Furthermore, model analysis is focused on the existence of equilibrium points and numerical simulations to visually showed population dynamics. The constructed model forms the SEAQIR model which has two equilibrium points, namely a disease-free equilibrium point and an endemic equilibrium point. The stability analysis showed that the disease-free equilibrium point was locally asymptotically stable at R01 and unstable at R01. Numerical simulations showed that increasing interventions in the form of quarantine could contribute to slowing the transmission of COVID-19 so that it is hoped that it can prevent outbreaks in the population.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–MacArthur predator–prey model. The model is derived by assuming that the prey may be infected by a disease. In order to take the memory effect into account, we apply two fractional differential operators, namely the Caputo fractional derivative (operator with power-law kernel) and the Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler kernel). We take the same order of the fractional derivative in all equations for both senses to maintain the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e., in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator point, the infected prey free point, the predator-free point and the co-existence point. For a model in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the local and global stability analysis and establish the conditions for the existence of Hopf bifurcation. It is found that the trivial equilibrium point is a saddle point while other equilibrium points are conditionally asymptotically stable. The numerical simulations show that the solutions of the model in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The essential difference between the two models is the convergence rate to reach the stable equilibrium point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of both models are different. Moreover, we also observe a bistability phenomenon which disappears via Hopf bifurcation.


Sign in / Sign up

Export Citation Format

Share Document