BOUNDS FOR THE SPECTRUM OF ANALYTIC QUASINORMAL OPERATOR PENCILS

2003 ◽  
Vol 05 (01) ◽  
pp. 101-118 ◽  
Author(s):  
M. I. GIL'

We consider a class of pencils (operator valued functions of a complex argument) in a separable Hilbert space. Bounds for the λ-nonlinear spectrum are suggested. Applications to differential operators, integral operators with delay and infinite matrix pencils are also discussed.

Author(s):  
Yurii B. Orochko

For an unbounded self-adjoint operator A in a separable Hilbert space ℌ and scalar real-valued functions a(t), q(t), r(t), t ∊ ℝ, consider the differential expressionacting on ℌ-valued functions f(t), t ∊ ℝ, and degenerating at t = 0. Let Sp denotethe corresponding minimal symmetric operator in the Hilbert space (ℝ) of ℌ-valued functions f(t) with ℌ-norm ∥f(t)∥ square integrable on the line. The infiniteness of the deficiency indices of Sp, 1/2 < p < 3/2, is proved under natural restrictions on a(t), r(t), q(t). The conditions implying their equality to 0 for p ≥ 3/2 are given. In the case of a self-adjoint differential operator A acting in ℌ = L2(ℝn), the first of these results implies examples of symmetric degenerate differential operators with infinite deficiency indices in L2(ℝm), m = n + 1.


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3415-3425 ◽  
Author(s):  
Michael Gil’

Let H be a linear unbounded operator in a separable Hilbert space. It is assumed the resolvent of H is a compact operator and H ? H* is a Schatten - von Neumann operator. Various integro-differential operators satisfy these conditions. Under certain assumptions it is shown that H is similar to a normal operator and a sharp bound for the condition number is suggested. We also discuss applications of that bound to spectrum perturbations and operator functions.


1957 ◽  
Vol 53 (2) ◽  
pp. 304-311 ◽  
Author(s):  
D. R. Smart

Introduction. Let be the complex separable Hilbert space. We say that the closed linear operator T, with domain dense in. , is represented by the infinite matrix H if T is the operator T˜1(H) defined† by H (with respect to some complete orthonormal set). We define an (nJ)-matrix as a Hermitian matrix H = [hij]i, j ≥ 1 for which hij = 0 when i − j > n and hij ╪ 0 when i − j = n. (Thus a Jacobi matrix is a (1J)-matrix.) If, in addition, hij = 0 when 0 < i − j < n, we call H an (nJ ┴)-matrix.


Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kordan N. Ospanov

AbstractWe give some sufficient conditions for the existence and uniqueness of the solution of a higher-order linear differential equation with unbounded coefficients in the Hilbert space. We obtain some estimates for the weighted norms of the solution and its derivatives. Using these estimates, we show the conditions for the compactness of some integral operators associated with the resolvent.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 594-612 ◽  
Author(s):  
Abdon Atangana ◽  
Emile Franc Doungmo Goufo

AbstractHumans are part of nature, and as nature existed before mankind, mathematics was created by humans with the main aim to analyze, understand and predict behaviors observed in nature. However, besides this aspect, mathematicians have introduced some laws helping them to obtain some theoretical results that may not have physical meaning or even a representation in nature. This is also the case in the field of fractional calculus in which the main aim was to capture more complex processes observed in nature. Some laws were imposed and some operators were misused, such as, for example, the Riemann–Liouville and Caputo derivatives that are power-law-based derivatives and have been used to model problems with no power law process. To solve this problem, new differential operators depicting different processes were introduced. This article aims to clarify some misunderstandings about the use of fractional differential and integral operators with non-singular kernels. Additionally, we suggest some numerical discretizations for the new differential operators to be used when dealing with initial value problems. Applications of some nature processes are provided.


Author(s):  
Raffaella Carbone ◽  
Federico Girotti

AbstractWe introduce a notion of absorption operators in the context of quantum Markov processes. The absorption problem in invariant domains (enclosures) is treated for a quantum Markov evolution on a separable Hilbert space, both in discrete and continuous times: We define a well-behaving set of positive operators which can correspond to classical absorption probabilities, and we study their basic properties, in general, and with respect to accessibility structure of channels, transience and recurrence. In particular, we can prove that no accessibility is allowed between the null and positive recurrent subspaces. In the case, when the positive recurrent subspace is attractive, ergodic theory will allow us to get additional results, in particular about the description of fixed points.


2020 ◽  
Vol 32 (4) ◽  
pp. 919-936 ◽  
Author(s):  
Jiao Chen ◽  
Wei Ding ◽  
Guozhen Lu

AbstractAfter the celebrated work of L. Hörmander on the one-parameter pseudo-differential operators, the applications of pseudo-differential operators have played an important role in partial differential equations, geometric analysis, harmonic analysis, theory of several complex variables and other branches of modern analysis. For instance, they are used to construct parametrices and establish the regularity of solutions to PDEs such as the {\overline{\partial}} problem. The study of Fourier multipliers, pseudo-differential operators and Fourier integral operators has stimulated further such applications. It is well known that the one-parameter pseudo-differential operators are {L^{p}({\mathbb{R}^{n}})} bounded for {1<p<\infty}, but only bounded on local Hardy spaces {h^{p}({\mathbb{R}^{n}})} introduced by Goldberg in [D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 1979, 1, 27–42] for {0<p\leq 1}. Though much work has been done on the {L^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} boundedness for {1<p<\infty} and Hardy {H^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} boundedness for {0<p\leq 1} for multi-parameter Fourier multipliers and singular integral operators, not much has been done yet for the boundedness of multi-parameter pseudo-differential operators in the range of {0<p\leq 1}. The main purpose of this paper is to establish the boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces {h^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} for {0<p\leq 1} recently introduced by Ding, Lu and Zhu in [W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 2019, 352–380].


2021 ◽  
Vol 13 (2) ◽  
pp. 326-339
Author(s):  
H.H. Bang ◽  
V.N. Huy

In this paper, we investigate the behavior of the sequence of $L^\Phi$-norm of functions, which are generated by differential and integral operators through their spectra (the support of the Fourier transform of a function $f$ is called its spectrum and denoted by sp$(f)$). With $Q$ being a polynomial, we introduce the notion of $Q$-primitives, which will return to the notion of primitives if ${Q}(x)= x$, and study the behavior of the sequence of norm of $Q$-primitives of functions in Orlicz space $L^\Phi(\mathbb R^n)$. We have the following main result: let $\Phi $ be an arbitrary Young function, ${Q}({\bf x} )$ be a polynomial and $(\mathcal{Q}^mf)_{m=0}^\infty \subset L^\Phi(\mathbb R^n)$ satisfies $\mathcal{Q}^0f=f, {Q}(D)\mathcal{Q}^{m+1}f=\mathcal{Q}^mf$ for $m\in\mathbb{Z}_+$. Assume that sp$(f)$ is compact and $sp(\mathcal{Q}^{m}f)= sp(f)$ for all $m\in \mathbb{Z}_+.$ Then $$ \lim\limits_{m\to \infty } \|\mathcal{Q}^m f\|_{\Phi}^{1/m}= \sup\limits_{{\bf x} \in sp(f)} \bigl|1/ {Q}({\bf x}) \bigl|. $$ The corresponding results for functions generated by differential operators and integral operators are also given.


Sign in / Sign up

Export Citation Format

Share Document