Positive and nodal solutions for an elliptic equation with critical growth

2016 ◽  
Vol 18 (02) ◽  
pp. 1550021 ◽  
Author(s):  
Marcelo F. Furtado ◽  
Bruno N. Souza

We consider the problem [Formula: see text] where [Formula: see text] is a bounded smooth domain, [Formula: see text], [Formula: see text], [Formula: see text]. Under some suitable conditions on the continuous potential [Formula: see text] and on the parameter [Formula: see text], we obtain one nodal solution for [Formula: see text] and one positive solution for [Formula: see text].

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Mónica Clapp ◽  
Filomena Pacella

AbstractWe establish the existence of nodal solutions to the supercritical problemin a symmetric bounded smooth domain Ω of


2017 ◽  
Vol 84 (1-2) ◽  
pp. 90
Author(s):  
S. H. Rasouli

<p>We analyze the existence of positive solutions of infinite semipositone nonlinear systems with multiple parameters of the form</p><span>{</span>Δu = α<sub>1</sub> (f (v)) - 1/<sub>u</sub><sup>n</sup>) + β<sub>1</sub>(h (u) - 1/<sub>u</sub><sup>n</sup>),     x € Ω),<br /> -Δv = α<sub>2</sub> (g (u)) - 1/<sub>v</sub><sup>θ</sup>) + β<sub>2</sub>(k (v) - 1/<sub>u</sub><sup>θ</sup>),    x € Ω), <br /> u = v = 0,                                                x € δΩ),<p>where Ω is a bounded smooth domain of R<sup>N</sup>, η, θ ε (0, 1), and α<sub>1</sub>, α<sub>2</sub>, β<sub>1</sub> and β<sub>2</sub> are nonnegative parameters. Here f, g, h, k ε C ([0, ∞ ]), are non-decreasing functions and f(0), g(0), h(0), k(0) &gt; 0. We use the method of sub-super solutions to prove the existence of positive solution for α<sub>1</sub> + β<sub>1</sub> and α<sub>2</sub> + β<sub>2</sub> large.</p>


Author(s):  
Zongming Guo

The structure of non-trivial non-negative solutions to singularly perturbed semilinear Dirichlet problems of the form −ε2Δu = f(u) in Ω, u = 0 on ∂Ω, Ω ⊂ RN a bounded smooth domain, is studied as ε → 0+, for a class of nonlinearities f(u) satisfying f(0) = f(z1) = f(z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1), f > 0 in (z1, z2) and . It is shown that there are many non-trivial non-negative solutions and they are spike-layer solutions. Moreover, the measure of each spike layer is estimated as ε → 0+. These results are applied to the study of the structure of positive solutions of the same problems with f changing sign many times in (0, ∞). Uniqueness of a large positive solution and many positive intermediate spike-layer solutions are obtained for ε sufficiently small.


2008 ◽  
Vol 2008 ◽  
pp. 1-25 ◽  
Author(s):  
Francisco Julio S. A. Corrêa ◽  
Rúbia G. Nascimento

Questions on the existence of positive solutions for the following class of elliptic problems are studied:−[M(‖u‖1,pp)]1,pΔpu=f(x,u), inΩ,u=0, on∂Ω, whereΩ⊂ℝNis a bounded smooth domain,f:Ω¯×ℝ+→ℝandM:ℝ+→ℝ,  ℝ+=[0,∞)are given functions.


2018 ◽  
Vol 2019 (19) ◽  
pp. 5953-5974
Author(s):  
Mónica Clapp ◽  
Jorge Faya ◽  
Filomena Pacella

Abstract Let Ω be a bounded smooth domain in $\mathbb {R}^{N}$ which contains a ball of radius R centered at the origin, N ≥ 3. Under suitable symmetry assumptions, for each δ ∈ (0, R), we establish the existence of a sequence (um, δ) of nodal solutions to the critical problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u\text{ in }\Omega_{\delta}:=\{x\in\Omega :\left\vert x\right\vert>\delta\},\quad u=0\text{ on }\partial \Omega_{\delta},\nonumber\end{align*}$$ where $2^{\ast }:=\frac {2N}{N-2}$ is the critical Sobolev exponent. We show that, if Ω is strictly star-shaped then, for each $m\in \mathbb {N},$ the solutions um, δ concentrate and blow up at 0, as $\delta \rightarrow 0,$ and their limit profile is a tower of nodal bubbles, that is, it is a sum of rescaled nonradial sign-changing solutions to the limit problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u, \quad u\in D^{1,2}(\mathbb{R}^{N}),\nonumber\end{align*}$$ centered at the origin.


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Zhijun Zhang

This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝ n , g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$ , b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.


2002 ◽  
Vol 04 (03) ◽  
pp. 409-434 ◽  
Author(s):  
ADIMURTHI

In this article, we have determined the remainder term for Hardy–Sobolev inequality in H1(Ω) for Ω a bounded smooth domain and studied the existence, non existence and blow up of first eigen value and eigen function for the corresponding Hardy–Sobolev operator with Neumann boundary condition.


Sign in / Sign up

Export Citation Format

Share Document