scholarly journals A Bochner principle and its applications to Fujiki class 𝒞 manifolds with vanishing first Chern class

2019 ◽  
Vol 22 (06) ◽  
pp. 1950051 ◽  
Author(s):  
Indranil Biswas ◽  
Sorin Dumitrescu ◽  
Henri Guenancia

We prove a Bochner-type vanishing theorem for compact complex manifolds [Formula: see text] in Fujiki class [Formula: see text], with vanishing first Chern class, that admit a cohomology class [Formula: see text] which is numerically effective (nef) and has positive self-intersection (meaning [Formula: see text], where [Formula: see text]). Using it, we prove that all holomorphic geometric structures of affine type on such a manifold [Formula: see text] are locally homogeneous on a non-empty Zariski open subset. Consequently, if the geometric structure is rigid in the sense of Gromov, then the fundamental group of [Formula: see text] must be infinite. In the particular case where the geometric structure is a holomorphic Riemannian metric, we show that the manifold [Formula: see text] admits a finite unramified cover by a complex torus with the property that the pulled back holomorphic Riemannian metric on the torus is translation invariant.

2020 ◽  
Vol 31 (05) ◽  
pp. 2050039
Author(s):  
Indranil Biswas ◽  
Sorin Dumitrescu

For compact complex manifolds with vanishing first Chern class that are compact torus principal bundles over Kähler manifolds, we prove that all holomorphic geometric structures on them, of affine type, are locally homogeneous. For a compact simply connected complex manifold in Fujiki class [Formula: see text], whose dimension is strictly larger than the algebraic dimension, we prove that it does not admit any holomorphic rigid geometric structure, and also it does not admit any holomorphic Cartan geometry of algebraic type. We prove that compact complex simply connected manifolds in Fujiki class [Formula: see text] and with vanishing first Chern class do not admit any holomorphic Cartan geometry of algebraic type.


2016 ◽  
Vol 27 (11) ◽  
pp. 1650094 ◽  
Author(s):  
Indranil Biswas ◽  
Sorin Dumitrescu

Our aim here is to investigate the holomorphic geometric structures on compact complex manifolds which may not be Kähler. We prove that holomorphic geometric structures of affine type on compact Calabi–Yau manifolds with polystable tangent bundle (with respect to some Gauduchon metric on it) are locally homogeneous. In particular, if the geometric structure is rigid in Gromov’s sense, then the fundamental group of the manifold must be infinite. We also prove that compact complex manifolds of algebraic dimension one bearing a holomorphic Riemannian metric must have infinite fundamental group.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Sorin Dumitrescu ◽  
Benjamin McKay

AbstractWe prove that any holomorphic locally homogeneous geometric structure on a complex torus of dimension two, modelled on a complex homogeneous surface, is translation invariant. We conjecture that this result is true in any dimension. In higher dimension, we prove it for G nilpotent. We also prove that for any given complex algebraic homogeneous space (X, G), the translation invariant (X, G)-structures on tori form a union of connected components in the deformation space of (X, G)-structures.


2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Graf ◽  
Martin Schwald

Abstract Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group ${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.


Author(s):  
Alina Marian ◽  
Dragos Oprea ◽  
Rahul Pandharipande

2015 ◽  
Vol 29 (24) ◽  
pp. 1550135
Author(s):  
Paul Bracken

It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a [Formula: see text] principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of [Formula: see text]. The formalism can be extended to deduce the fractional conductivity as well.


Sign in / Sign up

Export Citation Format

Share Document