REGION-BASED SEMANTIC IMAGE CLASSIFICATION

2006 ◽  
Vol 06 (03) ◽  
pp. 357-375
Author(s):  
ZAHER AL AGHBARI

In the field of content-based image retrieval, there exist a gap between low-level descriptions of image content and the semantic needs of users to query image databases. This paper demonstrates an approach to image retrieval founded on classifying image regions hierarchically based on their semantics (e.g. sky, snow, rocks, etc.) that resemble peoples' perception rather than on low-level features (e.g. color, texture, shape, etc.). Particularly, we consider outdoor images and automatically classify their regions based on their semantics using a support vector machines (SVMs). The SVMs learns the semantics of specified classes from specific low-level feature of the test image regions. Image regions are, first, segmented using a hill-climbing approach. Then, those regions are classified by the SVMs. Such semantic classification allows the implementation of intuitive query interface. As we show in our experiments, the high precision of semantic classification justifies the feasibility of our approach.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sonia Bansal ◽  
Vineet Mehan

Abstract Objectives The key test in Content-Based Medical Image Retrieval (CBMIR) frameworks for MRI (Magnetic Resonance Imaging) pictures is the semantic hole between the low-level visual data caught by the MRI machine and the elevated level data seen by the human evaluator. Methods The conventional component extraction strategies centre just on low-level or significant level highlights and utilize some handmade highlights to diminish this hole. It is important to plan an element extraction structure to diminish this hole without utilizing handmade highlights by encoding/consolidating low-level and elevated level highlights. The Fleecy gathering is another packing technique, which is applied in plan depiction here and SVM (Support Vector Machine) is applied. Remembering the predefinition of bunching amount and enlistment cross-section is until now a significant theme, a new predefinition advance is extended in this paper, in like manner, and another CBMIR procedure is suggested and endorsed. It is essential to design a part extraction framework to diminish this opening without using painstakingly gathered features by encoding/joining low-level and critical level features. Results SVM and FCM (Fuzzy C Means) are applied to the power structures. Consequently, the incorporate vector contains all the objectives of the image. Recuperation of the image relies upon the detachment among request and database pictures called closeness measure. Conclusions Tests are performed on the 200 Image Database. Finally, exploratory results are evaluated by the audit and precision.


2018 ◽  
Vol 45 (1) ◽  
pp. 117-135 ◽  
Author(s):  
Amna Sarwar ◽  
Zahid Mehmood ◽  
Tanzila Saba ◽  
Khurram Ashfaq Qazi ◽  
Ahmed Adnan ◽  
...  

The advancements in the multimedia technologies result in the growth of the image databases. To retrieve images from such image databases using visual attributes of the images is a challenging task due to the close visual appearance among the visual attributes of these images, which also introduces the issue of the semantic gap. In this article, we recommend a novel method established on the bag-of-words (BoW) model, which perform visual words integration of the local intensity order pattern (LIOP) feature and local binary pattern variance (LBPV) feature to reduce the issue of the semantic gap and enhance the performance of the content-based image retrieval (CBIR). The recommended method uses LIOP and LBPV features to build two smaller size visual vocabularies (one from each feature), which are integrated together to build a larger size of the visual vocabulary, which also contains complementary features of both descriptors. Because for efficient CBIR, the smaller size of the visual vocabulary improves the recall, while the bigger size of the visual vocabulary improves the precision or accuracy of the CBIR. The comparative analysis of the recommended method is performed on three image databases, namely, WANG-1K, WANG-1.5K and Holidays. The experimental analysis of the recommended method on these image databases proves its robust performance as compared with the recent CBIR methods.


Author(s):  
Siddhivinayak Kulkarni

Developments in technology and the Internet have led to an increase in number of digital images and videos. Thousands of images are added to WWW every day. Content based Image Retrieval (CBIR) system typically consists of a query example image, given by the user as an input, from which low-level image features are extracted. These low level image features are used to find images in the database which are most similar to the query image and ranked according their similarity. This chapter evaluates various CBIR techniques based on fuzzy logic and neural networks and proposes a novel fuzzy approach to classify the colour images based on their content, to pose a query in terms of natural language and fuse the queries based on neural networks for fast and efficient retrieval. A number of experiments were conducted for classification, and retrieval of images on sets of images and promising results were obtained.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950213 ◽  
Author(s):  
Vibhav Prakash Singh ◽  
Rajeev Srivastava ◽  
Yadunath Pathak ◽  
Shailendra Tiwari ◽  
Kuldeep Kaur

Content-based image retrieval (CBIR) system generally retrieves images based on the matching of the query image from all the images of the database. This exhaustive matching and searching slow down the image retrieval process. In this paper, a fast and effective CBIR system is proposed which uses supervised learning-based image management and retrieval techniques. It utilizes machine learning approaches as a prior step for speeding up image retrieval in the large database. For the implementation of this, first, we extract statistical moments and the orthogonal-combination of local binary patterns (OC-LBP)-based computationally light weighted color and texture features. Further, using some ground truth annotation of images, we have trained the multi-class support vector machine (SVM) classifier. This classifier works as a manager and categorizes the remaining images into different libraries. However, at the query time, the same features are extracted and fed to the SVM classifier. SVM detects the class of query and searching is narrowed down to the corresponding library. This supervised model with weighted Euclidean Distance (ED) filters out maximum irrelevant images and speeds up the searching time. This work is evaluated and compared with the conventional model of the CBIR system on two benchmark databases, and it is found that the proposed work is significantly encouraging in terms of retrieval accuracy and response time for the same set of used features.


Sign in / Sign up

Export Citation Format

Share Document