COIFLET BASED METHODS FOR RANGE IMAGE PROCESSING

2007 ◽  
Vol 07 (02) ◽  
pp. 321-351
Author(s):  
M. DJEBALI ◽  
M. MELKEMI ◽  
K. MELKEMI ◽  
N. SAPIDIS

In industry applications, the range images are generally huge points arrays and are additively noised. They usually represent surfaces of 3D objects and are used for reverse engineering process in CAD/CAM domains. To compute the geometrical model of each surface present in the range image, we denoise and sub-sample the raw range data. Denoising allows us to avoid the adverse effects of the noise on the obtained result. Sub-sampling the raw range data leads to a low image processing overheads like those of segmentation process. Based on interpolation properties of particular wavelets named coiflets, we propose a method for smoothing noisy range images. The smoothed image keeps invariant the "topological characteristics" of the represented surfaces. Thereafter, we propose a method for sub-sampling dense range images which leads to the reduction of the amount of raw data by a factor of four. This method eliminates the "redundant" information, thus the obtained result describes the essential details (as the shape of the physical surface) of the initial range image. The smoothing and sub-sampling methods are designed to be easily integrated in any reconstruction algorithm to improve its result and reduce its overhead in spite of its high complexity.

2011 ◽  
Vol 08 (04) ◽  
pp. 273-280
Author(s):  
YUXIANG YANG ◽  
ZENGFU WANG

This paper describes a successful application of Matting Laplacian Matrix to the problem of generating high-resolution range images. The Matting Laplacian Matrix in this paper exploits the fact that discontinuities in range and coloring tend to co-align, which enables us to generate high-resolution range image by integrating regular camera image into the range data. Using one registered and potentially high-resolution camera image as reference, we iteratively refine the input low-resolution range image, in terms of both spatial resolution and depth precision. We show that by using such a Matting Laplacian Matrix, we can get high-quality high-resolution range images.


2011 ◽  
Vol 26 (134) ◽  
pp. 171-189 ◽  
Author(s):  
Eddie Smigiel ◽  
Emmanuel Alby ◽  
Pierre Grussenmeyer

2018 ◽  
Vol 40 (16) ◽  
pp. 4407-4420
Author(s):  
Elvan Kuzucu ◽  
Dilan Öztürk ◽  
Mustafa Gül ◽  
Bengisu Özbay ◽  
A Mansur Arisoy ◽  
...  

As one of the most popular range detection methods, lidar is commonly used in various robotic applications. Although most robotic platforms easily adopt 2D lidar for range sensing, 3D lidar is rarely used in mobile robots, owing to its high cost. Some methods reported in the literature obtain 3D range information by rotating a single 2D lidar device. However, for most of these methods, there is a trade-off between 3D scan frequency and measurement density. Existing methods discussed in the literature for increasing the measurement density in high-frequency lidar have high time complexity and require certain conditions on data distribution. In a previous work, we showed the usability of an image super-resolution method, the Papoulis–Gerchberg (P–G) algorithm, on range data represented in the form of a greyscale image. However, the low convergence rate of the original P–G algorithm impedes its use for online applications. In this study, we advanced the P–G algorithm to drastically reduce the convergence time and improve performance by utilizing previous range images. The proposed algorithm now supports application on a mobile robot with online measurement density enhancement for 3D range images collected by rotating a 2D lidar device around its pitch axis with a high 3D scan frequency. We show illustrative examples for different scenarios to present the effectiveness of the proposed method on a 3D range sensor mounted on a mobile robot.


Sign in / Sign up

Export Citation Format

Share Document