Pattern Recognition Based on Fuzzy Set and Genetic Algorithm

2014 ◽  
Vol 14 (03) ◽  
pp. 1450009
Author(s):  
Kumar S. Ray

In this paper, we consider a soft computing approach to pattern classification. Our basic tools for soft computing are fuzzy relational calculus (FRC) and genetic algorithm (GA). We introduce a new interpretation of multidimensional fuzzy implication (MFI) to represent our knowledge about the training data set. We also consider the notion of a fuzzy pattern vector to handle the fuzzy information granules of the quantized pattern space and to represent a population of training patterns in the quantized pattern space. The construction of the pattern classifier is essentially based on the estimate of a fuzzy relation Ri between the antecedent clause and consequent clause of each one-dimensional fuzzy implication. For the estimation of Ri we use floating point representation of GA. Thus a set of fuzzy relations is formed from the new interpretation of MFI. This set of fuzzy relations is termed as the core of the pattern classifier. Once the classifier is constructed the non-fuzzy features of a test pattern can be classified. The performance of the proposed scheme is tested on synthetic data. Subsequently, we use the proposed scheme for the vowel classification problem of an Indian language. Finally, a benchmark of performance is established by considering multiplayer perception (MLP), support vector machine (SVM) and the present method. The Abalone, Hosse Colic and Pima Indians data sets, obtained from UCL database repository are used for the said benchmark study. This new tool for pattern classification is very effective for classification of patterns under vegue and imprecise environment. It can provide multiple classification under overlapped classes.

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 411
Author(s):  
Taoreed O. Owolabi ◽  
Mohd Amiruddin Abd Rahman

Graphitic carbon nitride is a stable and distinct two dimensional carbon-based polymeric semiconductor with remarkable potentials in organic pollutants degradation, chemical sensors, the reduction of CO2, water splitting and other photocatalytic applications. Efficient utilization of this material is hampered by the nature of its band gap and the rapid recombination of electron-hole pairs. Heteroatom incorporation due to doping alters the symmetry of the semiconductor and has been among the adopted strategies to tailor the band gap for enhancing the visible-light harvesting capacity of the material. Electron modulation and enhancement of reaction active sites due to doping as evident from the change in specific surface area of doped graphitic carbon nitride is employed in this work for modeling the associated band gap using hybrid genetic algorithm-based support vector regression (GSVR) and extreme learning machine (ELM). The developed GSVR performs better than ELM-SINE (with sine activation function), ELM-TRANBAS (with triangular basis activation function) and ELM-SIG (with sigmoid activation function) model with performance enhancement of 69.92%, 73.59% and 73.67%, respectively, on the basis of root mean square error as a measure of performance. The four developed models are also compared using correlation coefficient and mean absolute error while the developed GSVR demonstrates a high degree of precision and robustness. The excellent generalization and predictive strength of the developed models would ultimately facilitate quick determination of the band gap of doped graphitic carbon nitride and enhance its visible-light harvesting capacity for various photocatalytic applications.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamideh Soltani ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Keivan Maghooli

AbstractBrain computer interface (BCI) systems have been regarded as a new way of communication for humans. In this research, common methods such as wavelet transform are applied in order to extract features. However, genetic algorithm (GA), as an evolutionary method, is used to select features. Finally, classification was done using the two approaches support vector machine (SVM) and Bayesian method. Five features were selected and the accuracy of Bayesian classification was measured to be 80% with dimension reduction. Ultimately, the classification accuracy reached 90.4% using SVM classifier. The results of the study indicate a better feature selection and the effective dimension reduction of these features, as well as a higher percentage of classification accuracy in comparison with other studies.


Sign in / Sign up

Export Citation Format

Share Document