NON-GAUSSIAN NOISE-INDUCED FIRING TRANSITIONS AND ORDERED BURSTING IN A THERMO-SENSITIVE NEURON

2010 ◽  
Vol 09 (03) ◽  
pp. 289-299 ◽  
Author(s):  
YUBING GONG ◽  
XIU LIN ◽  
YINGHANG HAO ◽  
YANHANG XIE ◽  
XIAOGUANG MA

In this letter, we investigate how a particular kind of non-Gaussian colored noise (NGN), especially the correlation time τ and the departure q from Gaussian noise, affects the chaotic firing behavior in a thermo-sensitive neuron. It is found that transitions between spiking and bursting occur with changing τ or q, and ordered bursting appears when τ is optimal. As τ is increased, the neuron alternately exhibits spiking and bursting when q < 1, but always bursts when q > 1, and chaotic bursts may become ordered at an optimal τ. As q is increased, the neuron also exhibits transitions between spiking and bursting. These findings provide a new mechanism for the firing transitions in the neuron and present the constructive role of the NGN in the firing activity in the neuron. This reveals that the NGN would play subtle roles in the communication and information processing in the neurons.

2016 ◽  
Vol 30 (05) ◽  
pp. 1650012 ◽  
Author(s):  
Dongxi Li ◽  
Bing Hu ◽  
Jia Wang ◽  
Yingchuan Jing ◽  
Fangmei Hou

Based on the two-dimensional (2D) neural map, we investigate the impacts of non-Gaussian colored noise on the firing activity of discrete system. Taking the coherence parameter R to measure the regularity of firing behavior, it is demonstrated that coherence parameter R has a pronounced minimum value with the noise intensity and the correlation time of non-Gaussian colored noise, which is the so-called phenomenon of coherence resonance (CR). Besides, the firing activity is not sensitive to the non-Gaussian parameter which determines the departure from the Gaussian distribution when the correlation time is large enough.


2011 ◽  
Vol 10 (04) ◽  
pp. 359-369 ◽  
Author(s):  
LI WANG ◽  
YUBING GONG ◽  
XIU LIN

In this paper, we study the effect of external non-Gaussian noise on the temporal coherence of the intrinsic spiking induced by the channel noise in a stochastic Hodgkin–Huxley neuron. It is found that, for a sufficiently large membrane patch, the intrinsic spiking coherence can be enhanced by the proper values of non-Gaussian noise's strength, correlation time, or deviation from Gaussian distribution. And that the intrinsic spiking can exhibit coherence resonance when the noise's strength is optimal. This implies that the channel noise-induced intrinsic spiking may become more or the most ordered in time with the assistance of the external non-Gaussian noise. These results show that the external non-Gaussian noise can play a constructive role for improving the time precision of information processing in stochastic neurons.


2011 ◽  
Vol 10 (01) ◽  
pp. 1-11 ◽  
Author(s):  
YUBING GONG ◽  
XIU LIN ◽  
YINGHANG HAO ◽  
XIAOGUANG MA

In this Letter, we study firing transitions induced by a particular kind of non-Gaussian noise (NGN) and coupling in Newman-Watts small-world neuronal networks. It is found that chaotic bursting can be tamed by the coupling and evolves to regular spiking or bursting behavior as the coupling increases. As the NGN's deviation from Gaussian noise changes, the neurons exhibit firing transitions from irregular spiking to regular bursting, and the number of spikes inside per burst varies with the change of the deviation. These results show that the NGN and the coupling play crucial roles in the firing activity of the neurons, and hence are of great importance to the information processing and transmission in the neuronal networks.


2019 ◽  
Vol 33 (02) ◽  
pp. 1950004 ◽  
Author(s):  
Bing Wang ◽  
Xiaoxiao Zhang ◽  
Yajuan Sun ◽  
Zhongwei Qu ◽  
Xuechao Li

The transport phenomenon (movement and diffusion) of inertia Brownian particles in a periodic potential with non-Gaussian noise is investigated. It is found that proper noise intensity Q will promote particles directional movement (or diffusion), but large Q will inhibit this phenomenon. For large value of Q, the average velocity [Formula: see text] (or the diffusion coefficient D) has a maximum with increasing correlation time [Formula: see text]. But for small value of Q, [Formula: see text] (or D) decreases with increasing [Formula: see text]. In some cases, for the same value of Q and the same value of [Formula: see text], non-Gaussian noise can induce particles directional movement (or diffusion), but Gaussian colored noise cannot.


2020 ◽  
Vol 29 (5) ◽  
pp. 050501 ◽  
Author(s):  
Ting-Ting Shi ◽  
Xue-Mei Xu ◽  
Ke-Hui Sun ◽  
Yi-Peng Ding ◽  
Guo-Wei Huang

2019 ◽  
Vol 18 (04) ◽  
pp. 1950027 ◽  
Author(s):  
Kang-Kang Wang ◽  
De-Cai Zong ◽  
Hui Ye ◽  
Ya-Jun Wang

In the present paper, the stability and the phenomena of stochastic resonance (SR) for a FitzHugh–Nagumo (FHN) system with time delay driven by a multiplicative non-Gaussian noise and an additive Gaussian white noise are investigated. By using the fast descent method, unified colored noise approximation and the two-state theory for the SR, the expressions for the stationary probability density function (SPDF) and the signal-to-noise ratio (SNR) are obtained. The research results show that the two noise intensities and time delay can always decrease the probability density at the two stable states and impair the stability of the neural system; while the noise correlation time [Formula: see text] can increase the probability density around both stable states and consolidate the stability of the neural system. Furthermore, the other noise correlation time [Formula: see text] can increase the probability at the resting state, but reduce that around the excited state. With respect to the SNR, it is discovered that the two noise strengths can both weaken the SR effect, while time delay [Formula: see text] and the departure parameter [Formula: see text] will always amplify the SR phenomenon. Moreover, the noise correlation time [Formula: see text] can motivate the SR effect, but not alter the peak value of the SNR. What’s most interesting is that the other noise correlation time [Formula: see text] can not only stimulate the SR phenomenon, but also results in the occurrence of two resonant peaks, whose heights are simultaneously improved because of the action of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document