Multiscale Detrended Cross-Correlation Analysis of Traffic Time Series Based on Empirical Mode Decomposition

2015 ◽  
Vol 14 (03) ◽  
pp. 1550023 ◽  
Author(s):  
Yi Yin ◽  
Pengjian Shang

In this paper, we propose multiscale detrended cross-correlation analysis (MSDCCA) to detect the long-range power-law cross-correlation of considered signals in the presence of nonstationarity. For improving the performance and getting better robustness, we further introduce the empirical mode decomposition (EMD) to eliminate the noise effects and propose MSDCCA method combined with EMD, which is called MS-EDXA method, then systematically investigate the multiscale cross-correlation structure of the real traffic signals. We apply the MSDCCA and MS-EDXA methods to study the cross-correlations in three situations: velocity and volume on one lane, velocities on the present and the next moment and velocities on the adjacent lanes, and further compare their spectrums respectively. When the difference between the spectrums of MSDCCA and MS-EDXA becomes unobvious, there is a crossover which denotes the turning point of difference. The crossover results from the competition between the noise effects in the original signals and the intrinsic fluctuation of traffic signals and divides the plot of spectrums into two regions. In all the three case, MS-EDXA method makes the average of local scaling exponents increased and the standard deviation decreased and provides a relative stable persistent scaling cross-correlated behavior which gets the analysis more precise and more robust and improves the performance after noises being removed. Applying MS-EDXA method avoids the inaccurate characteristics of multiscale cross-correlation structure at the short scale including the spectrum minimum, the range for the spectrum fluctuation and general trend, which are caused by the noise in the original signals. We get the conclusions that the traffic velocity and volume are long-range cross-correlated, which is accordant to their actual evolution, while velocities on the present and the next moment and velocities on adjacent lanes reflect the strong cross-correlations both in temporal and spatial dimensions. We also reveal the similarity and uniqueness in the cross-correlation situations between velocities. Besides, signals on one lane show stronger long-range cross-correlation than that on adjacent lanes. Thus, the multiscale cross-correlation structure acquired by MS-EDXA is more close to the intrinsic mechanism of traffic system and reflects more accurate and more abundant traffic information.

Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050035 ◽  
Author(s):  
DANLEI GU ◽  
JINGJING HUANG

We used the multifractal detrended cross-correlation analysis (MFDCCA) method based on ensemble empirical mode decomposition (EEMD) to study the 5-min high-frequency data of two Chinese stocks and two US stocks. Using EEMD method to decompose the original high-frequency stock data can effectively reduce the interference of noise on the series, which helps to reveal the internal characteristics of the stock system and extract more accurate and rich information. We first conducted a cross-correlation test and cross-correlation coefficient analysis on the reconstructed stock data of two groups, and found that there is a cross-correlations between them. Then we used the EEMD-based MFDCCA method to analyze the cross-correlation between the data and found that there are significant cross-correlations between DJI and NASDAQ and between SSEC and SZSE. The cross-correlation of the two Chinese stocks is stronger than that of the two US stocks. The MFDCCA results of the comparison of the original series with the reconstructed series after decomposition by the EEMD method show that the reconstructed series can display more internal details of the multifractal cross-correlation metrics compared with the original series.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Keqiang Dong ◽  
You Gao ◽  
Nianpeng Wang

Detrended cross-correlation analysis (DCCA) is a scaling method commonly used to estimate long-range power-law cross-correlation in nonstationary signals. Recent studies have reported signals superimposed with trends, which often lead to the complexity of the signals and the susceptibility of DCCA. This paper artificially generates long-range cross-correlated signals and systematically investigates the effect of seasonal trends. Specifically, for the crossovers raised by trends, we propose a smoothing algorithm based on empirical mode decomposition (EMD) method which decomposes underlying signals into several intrinsic mode functions (IMFs) and a residual trend. After the removal of slowly oscillating components and residual term, seasonal trends are eliminated.


2021 ◽  
Author(s):  
Aktham Maghyereh ◽  
hussein abdoh

Abstract In this paper, we exploit multifractal detrended cross-correlation analysis (MF-DCCA) to investigate the impact of COVID-19 pandemic on the cross-correlations between oil and US equity market (as represented by the S&P 500 index). First, we examine the detrended moving average cross-correlation coefficient between oil and S&P 500 returns before and during the COVID-19 pandemic. The correlation analysis shows that US stock markets became more correlated with oil during the pandemic in the long term. Second, we find that the pandemic has caused an increase in the long range cross correlations over the small fluctuations. Third, the MF-DCCA method shows that the pandemic caused an increase of multifractality in cross-correlations between the two markets. In sum, the pandemic caused a closer correlation between oil and US equity in the long range and a deeper dynamical connection between oil and US equity markets as indicated by the multifractality tests.


2019 ◽  
Vol 18 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Jingjing Huang ◽  
Danlei Gu

In order to obtain richer information on the cross-correlation properties between two time series, we introduce a method called multiscale multifractal detrended cross-correlation analysis (MM-DCCA). This method is based on the Hurst surface and can be used to study the non-linear relationship between two time series. By sweeping through all the scale ranges of the multifractal structure of the complex system, it can present more information than the multifractal detrended cross-correlation analysis (MF-DCCA). In this paper, we use the MM-DCCA method to study the cross-correlations between two sets of artificial data and two sets of 5[Formula: see text]min high-frequency stock data from home and abroad. They are SZSE and SSEC in the Chinese market, and DJI and NASDAQ in the US market. We use Hurst surface and Hurst exponential distribution histogram to analyze the research objects and find that SSEC, SZSE and DJI, NASDAQ all show multifractal properties and long-range cross-correlations. We find that the fluctuation of the Hurst surface is related to the positive and negative of [Formula: see text], the change of scale range, the difference of national system, and the length of time series. The results show that the MM-DCCA method can give more abundant information and more detailed dynamic processes.


Fractals ◽  
2011 ◽  
Vol 19 (03) ◽  
pp. 329-338 ◽  
Author(s):  
XIAOJUN ZHAO ◽  
PENGJIAN SHANG ◽  
QIUYUE JIN

Multifractal detrended cross-correlation analysis (MF-DXA) has been developed to detect the long-range power-law cross-correlation of two simultaneous series. However, the synchronization of underlying data can not be guaranteed integrated by a variety of factors. We artificially imbed a time delay in considered series and study its influence on the multifractal cross-correlation analysis. Time delay is found to affect the multifractal characterization, where a larger time delay causes a weaker multifractality. We also propose an alternative modification on MF-DXA to make the process more robust. The logarithmic return and volatility of Chinese stock indices show cross-correlation scaling behavior and strong multifractality by MF-DXA as well as singularity spectrum analysis.


Sign in / Sign up

Export Citation Format

Share Document