Time-Varying Delay Estimation Applied to the Surface Electromyography Signals Using the Parametric Approach

2018 ◽  
Vol 17 (02) ◽  
pp. 1850015 ◽  
Author(s):  
Gia Thien Luu ◽  
Abdelbassit Boualem ◽  
Tran Trung Duy ◽  
Philippe Ravier ◽  
Olivier Butteli

Muscle Fiber Conduction Velocity (MFCV) can be calculated from the time delay between the surface electromyographic (sEMG) signals recorded by electrodes aligned with the fiber direction. In order to take into account the non-stationarity during the dynamic contraction (the most daily life situation) of the data, the developed methods have to consider that the MFCV changes over time, which induces time-varying delays and the data is non-stationary (change of Power Spectral Density (PSD)). In this paper, the problem of TVD estimation is considered using a parametric method. First, the polynomial model of TVD has been proposed. Then, the TVD model parameters are estimated by using a maximum likelihood estimation (MLE) strategy solved by a deterministic optimization technique (Newton) and stochastic optimization technique, called simulated annealing (SA). The performance of the two techniques is also compared. We also derive two appropriate Cramer–Rao Lower Bounds (CRLB) for the estimated TVD model parameters and for the TVD waveforms. Monte-Carlo simulation results show that the estimation of both the model parameters and the TVD function is unbiased and that the variance obtained is close to the derived CRBs. A comparison with non-parametric approaches of the TVD estimation is also presented and shows the superiority of the method proposed.

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988950 ◽  
Author(s):  
Kuiyang Wang ◽  
Ren He ◽  
Heng Li ◽  
Jinhua Tang ◽  
Ruochen Liu ◽  
...  

Time-varying input delay of actuators, uncertainty of model parameters, and input and output disturbances are important issues in the research on active suspension system of vehicle. In this article, a design methodology involving state observer and observer-based dynamic output-feedback [Formula: see text] controller considering the above four factors simultaneously is put forward for active suspension system. First, the dynamics equations of active suspension system with time-varying delay are established according to its structure and principle, and its state equations, state observer, and observer-based controller considering time-varying delay, uncertainty of model parameters, and input and output disturbances are given separately. Second, the observer-based controller for quarter-vehicle active suspension system is designed in terms of the linear matrix inequality and the Lyapunov–Krasovskii functional, and the design problem of observer-based controller is converted into the solving problem of linear matrix inequalities. Finally, the gain matrix of observer and the gain matrix of controller are obtained by means of the developed controller and the model parameters of active suspension system; the MATLAB/Simulink model of this system is established; and three numerical simulation cases are given to show the effectiveness of the proposed scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yi-You Hou ◽  
Zhang-Lin Wan

This paper considers the problem of the robust stability for the nonlinear system with time-varying delay and parameters uncertainties. Based on theH∞theorem, Lyapunov-Krasovskii theory, and linear matrix inequality (LMI) optimization technique, theH∞quasi-sliding mode controller and switching function are developed such that the nonlinear system is asymptotically stable in the quasi-sliding mode and satisfies the disturbance attenuation (H∞-norm performance). The effectiveness and accuracy of the proposed methods are shown in numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document