Shock Waves in Bose–Einstein Condensation Under Gaussian White Noise

2018 ◽  
Vol 17 (03) ◽  
pp. 1850027
Author(s):  
Eren Tosyali

We investigate the Gross–Pitaevskii equation with the tilted bichromatical optical lattice potential for finding the dynamics of a Bose–Einstein condensate system under the Gaussian white noise. We construct the Poincare sections of system based on the relations between the system parameters and solution behaviors to understand how its shock wave like dynamic could be affected by the noise. Also the hierarchical cluster analysis method investigation of the system is presented.

2008 ◽  
Vol 17 (10) ◽  
pp. 2150-2154 ◽  
Author(s):  
S. YU. TORILOV ◽  
K. A. GRIDNEV ◽  
W. GREINER

The simple alpha-cluster model was used for the consideration of the chain states and Bose-Einstein condensation in the light self-conjugated nuclei. Obtained results were compared with predictions of the shell-model for the deformed nuclei, with calculations based on Gross-Pitaevskii equation and with recent experimental results.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012200
Author(s):  
K G Zloshchastiev

Abstract We recall the experimental data of one-dimensional axial propagation of sound near the center of the Bose-Einstein condensate cloud, which used the optical dipole force method of a focused laser beam and rapid sequencing of nondestructive phase-contrast images. We reanalyze these data within the general quantum fluid framework but without model-specific theoretical assumptions; using the standard best fit techniques. We demonstrate that some of their features cannot be explained by means of the perturbative two-body approximation and Gross-Pitaevskii model, and conjecture possible solutions.


2013 ◽  
Vol 27 (25) ◽  
pp. 1350184 ◽  
Author(s):  
A. BENSEGHIR ◽  
W. A. T. WAN ABDULLAH ◽  
B. A. UMAROV ◽  
B. B. BAIZAKOV

In this paper, we study the response of a Bose–Einstein condensate with strong dipole–dipole atomic interactions to periodically varying perturbation. The dynamics is governed by the Gross–Pitaevskii equation with additional nonlinear term, corresponding to a nonlocal dipolar interactions. The mathematical model, based on the variational approximation, has been developed and applied to parametric excitation of the condensate due to periodically varying coefficient of nonlocal nonlinearity. The model predicts the waveform of solitons in dipolar condensates and describes their small amplitude dynamics quite accurately. Theoretical predictions are verified by numerical simulations of the nonlocal Gross–Pitaevskii equation and good agreement between them is found. The results can lead to better understanding of the properties of ultra-cold quantum gases, such as 52 Cr , 164 Dy and 168 Er , where the long-range dipolar atomic interactions dominate the usual contact interactions.


1995 ◽  
Vol 50 (10) ◽  
pp. 921-930 ◽  
Author(s):  
Siegfried Grossmann ◽  
Martin Holthaus

Abstract We study Bose-Einstein condensation of comparatively small numbers of atoms trapped by a three-dimensional harmonic oscillator potential. Under the assumption that grand canonical statis­tics applies, we derive analytical expressions for the condensation temperature, the ground state occupation, and the specific heat capacity. For a gas of TV atoms the condensation temperature is proportional to N1/3, apart from a downward shift of order N-1/3. A signature of the condensation is a pronounced peak of the heat capacity. For not too small N the heat capacity is nearly discon­tinuous at the onset of condensation; the magnitude of the jump is about 6.6 N k. Our continuum approximations are derived with the help of the proper density of states which allows us to calculate finite-AT-corrections, and checked against numerical computations.


Author(s):  
Yunsong Guo ◽  
Yubin Jiao ◽  
Xiaoning Liu ◽  
Xiangbo Zhu ◽  
Ying Wang

In this study, we investigate the evolution of vortex in harmonically trapped two-component coupled Bose–Einstein condensate with quintic-order nonlinearity. We derive the vortex solution of this two-component system based on the coupled quintic-order Gross–Pitaevskii equation model and the variational method. It is found that the evolution of vortex is a metastable state. The radius of vortex soliton shrinks and expands with time, resulting in periodic breathing oscillation, and the angular frequency of the breathing oscillation is twice the value of the harmonic trapping frequency under infinitesimal nonlinear strength. At the same time, it is also found that the higher-order nonlinear term has a quantitative effect rather than a qualitative impact on the oscillation period. With practical experimental setting, we identify the quasi-stable oscillation of the derived vortex evolution mode and illustrated its features graphically. The theoretical results developed in this work can be used to guide the experimental observation of the vortex phenomenon in ultracold coupled atomic systems with quintic-order nonlinearity.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050241
Author(s):  
Jin Xu ◽  
Jinbin Li

We study the phase separation in three-component spin-orbit-angular-momentum coupled Bose–Einstein condensate with spin-1 in three dimensions. Different types of phase-separation are acquired upon an increase of the coupling strength, magnetic gradient strength, spin-dependent interaction strength and particle number above a critical value. Increasing the value of coupling strength and other related parameters shows distinct behaviors which are produced by repulsion for large strengths of spin-orbit angular-momentum (SOAM) coupling. The present investigation is carried out through a numerical Crank–Nicolson method of the underlying mean-field Gross–Pitaevskii equation.


2004 ◽  
Vol 18 (27n29) ◽  
pp. 3797-3802 ◽  
Author(s):  
S.-R. ERIC YANG ◽  
Q-HAN PARK ◽  
J. YEO

We have studied theoretically the Bose-Einstein condensation (BEC) of two-dimensional excitons in a ring with a random variation of the effective exciton potential along the circumference. We derive a nonlinear Gross-Pitaevkii equation (GPE) for such a condensate, which is valid even in the presence of a weak magnetic field. For several types of the random potentials our numerical solution of the ground state of the GPE displays a necklace-like structure. This is a consequence of the interplay between the random potential and a strong nonlinear repulsive term of the GPE. We have investigated how the mean distance between modulation peaks depends on properties of the random potentials.


2010 ◽  
Vol 24 (30) ◽  
pp. 2911-2920 ◽  
Author(s):  
ALAIN MOÏSE DIKANDÉ ◽  
ISAIAH NDIFON NGEK ◽  
JOSEPH EBOBENOW

A theoretical scheme for an experimental implementation involving bisolitonic matter waves from an attractive Bose–Einstein condensate, is considered within the framework of a non-perturbative approach to the associate Gross–Pitaevskii equation. The model consists of a single condensate subjected to an expulsive harmonic potential creating a double-condensate structure, and a gravitational potential that induces atomic exchanges between the two overlapping post condensates. Using a non-isospectral scattering transform method, exact expressions for the bright-matter–wave bisolitons are found in terms of double-lump envelopes with the co-propagating pulses displaying more or less pronounced differences in their widths and tails depending on the mass of atoms composing the condensate.


Sign in / Sign up

Export Citation Format

Share Document