Strong solutions for functional SDEs with singular drift

2017 ◽  
Vol 18 (02) ◽  
pp. 1850015 ◽  
Author(s):  
Xing Huang

By using Zvonkin type transforms, existence and uniqueness are proved for a class of functional stochastic differential equations with singular drifts. The main results extend corresponding ones in [5, 11] for stochastic differential equations driven by Brownian motion and symmetric [Formula: see text]-stable process respectively.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


2009 ◽  
Vol 09 (03) ◽  
pp. 423-435 ◽  
Author(s):  
TYRONE DUNCAN ◽  
DAVID NUALART

In this paper we establish the existence of pathwise solutions and the uniqueness in law for multidimensional stochastic differential equations driven by a multi-dimensional fractional Brownian motion with Hurst parameter H > 1/2.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Jiajie Wang ◽  
Qikang Ran ◽  
Qihong Chen

We are concerned with the solutions of a special class of backward stochastic differential equations which are driven by a Brownian motion, where the uniform Lipschitz continuity is replaced by a stochastic one. We prove the existence and uniqueness of the solution in Lp with p>1.


Author(s):  
Zhongmin Qian ◽  
Yuhan Yao

AbstractWe study a class of McKean–Vlasov type stochastic differential equations (SDEs) which arise from the random vortex dynamics and other physics models. By introducing a new approach we resolve the existence and uniqueness of both the weak and strong solutions for the McKean–Vlasov stochastic differential equations whose coefficients are defined in terms of singular integral kernels such as the Biot–Savart kernel. These SDEs which involve the distributions of solutions are in general not Lipschitz continuous with respect to the usual distances on the space of distributions such as the Wasserstein distance. Therefore there is an obstacle in adapting the ordinary SDE method for the study of this class of SDEs, and the conventional methods seem not appropriate for dealing with such distributional SDEs which appear in applications such as fluid mechanics.


2006 ◽  
Vol 06 (03) ◽  
pp. 329-340 ◽  
Author(s):  
XICHENG ZHANG ◽  
JINGYANG ZHU

By proving an extension of nonlinear Bihari's inequality (including Gronwall's inequality) to multi-parameter and non-Lebesgue measure, in this paper we first prove by successive approximation the existence and uniqueness of solution of stochastic differential equation with non-Lipschitz coefficients and driven by multi-parameter Brownian motion. Then we study two discretizing schemes for this type of equation, and obtain their L2-convergence speeds.


2012 ◽  
Vol 67 (12) ◽  
pp. 699-704 ◽  
Author(s):  
Faiz Faizullah

In this note, the Carathéodory approximation scheme for vector valued stochastic differential equations under G-Brownian motion (G-SDEs) is introduced. It is shown that the Carathéodory approximate solutions converge to the unique solution of the G-SDEs. The existence and uniqueness theorem for G-SDEs is established by using the stated method.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
L. Decreusefond

We consider stochastic differential equations driven by some Volterra processes. Under time reversal, these equations are transformed into past-dependent stochastic differential equations driven by a standard Brownian motion. We are then in position to derive existence and uniqueness of solutions of the Volterra driven SDE considered at the beginning.


2020 ◽  
Vol 28 (4) ◽  
pp. 269-279
Author(s):  
Mohamed Marzougue ◽  
Mohamed El Otmani

AbstractIn the present paper, we consider reflected backward stochastic differential equations when the reflecting obstacle is not necessarily right-continuous in a general filtration that supports a one-dimensional Brownian motion and an independent Poisson random measure. We prove the existence and uniqueness of a predictable solution for such equations under the stochastic Lipschitz coefficient by using the predictable Mertens decomposition.


2020 ◽  
Vol 28 (4) ◽  
pp. 253-268
Author(s):  
AbdulRahman Al-Hussein ◽  
Boulakhras Gherbal

AbstractThe paper addresses a system of nonlinear fully coupled forward-backward doubly stochastic differential equations with Poisson jumps. These equations are allowed to live in Euclidean spaces of different dimensions, and the system is Markovian in the sense that the terminal value of the backward equation depends on the terminal value of the solution of the forward one. Under some monotonicity conditions we establish the existence and uniqueness of strong solutions of such equations by using a continuation method.


Sign in / Sign up

Export Citation Format

Share Document