A result on the Laplace transform associated with the sticky Brownian motion on an interval

2020 ◽  
pp. 2150031
Author(s):  
Shiyu Song

In this paper, we study the joint Laplace transform of the sticky Brownian motion on an interval, its occupation time at zero and its integrated process. The perturbation approach of Li and Zhou [The joint Laplace transforms for diffusion occupation times, Adv. Appl. Probab. 45 (2013) 1049–1067] is adopted to convert the problem into the computation of three Laplace transforms, which is essentially equivalent to solving the associated differential equations with boundary conditions. We obtain the explicit expression for the joint Laplace transform in terms of the modified Bessel function and Airy functions.

1963 ◽  
Vol 13 (4) ◽  
pp. 325-329 ◽  
Author(s):  
F. M. Ragab

In the present paper we determine the Laplace transforms of the modified Bessel function of the second kind Kn(t±mx), where m is any positive integer. The Laplace transforms are given in (2) and (4) below, p being the transform parameter and having positive real part.


2012 ◽  
Vol 49 (02) ◽  
pp. 549-565 ◽  
Author(s):  
Lothar Breuer

In this paper we determine the distributions of occupation times of a Markov-modulated Brownian motion (MMBM) in separate intervals before a first passage time or an exit from an interval. We derive the distributions in terms of their Laplace transforms, and we also distinguish between occupation times in different phases. For MMBMs with strictly positive variation parameters, we further propose scale functions.


2003 ◽  
Vol 40 (1) ◽  
pp. 180-199 ◽  
Author(s):  
Fabrice Guillemin ◽  
Ravi Mazumdar ◽  
Alain Dupuis ◽  
Jacqueline Boyer

We analyse in this paper the fluid weighted fair queueing system with two classes of customers, who arrive according to Poisson processes and require arbitrarily distributed service times. In a first step, we express the Laplace transform of the joint distribution of the workloads in the two virtual queues of the system by means of unknown Laplace transforms. Such an unknown Laplace transform is related to the distribution of the workload in one queue provided that the other queue is empty. We explicitly compute the unknown Laplace transforms by means of a Wiener—Hopf technique. The determination of the unknown Laplace transforms can be used to compute some performance measures characterizing the system (e.g. the mean waiting time for each class) which we compute in the exponential service case.


2001 ◽  
Vol 33 (1) ◽  
pp. 223-241 ◽  
Author(s):  
Daniel Dufresne

This paper is about the probability law of the integral of geometric Brownian motion over a finite time interval. A partial differential equation is derived for the Laplace transform of the law of the reciprocal integral, and is shown to yield an expression for the density of the distribution. This expression has some advantages over the ones obtained previously, at least when the normalized drift of the Brownian motion is a non-negative integer. Bougerol's identity and a relationship between Brownian motions with opposite drifts may also be seen to be special cases of these results.


1968 ◽  
Vol 35 (3) ◽  
pp. 489-494 ◽  
Author(s):  
B. A. Boley ◽  
R. B. Hetnarski

The character and magnitude of traveling discontinuities in one-dimensional coupled transient thermoelastic problems are studied. For this purpose, 16 different fundamental problems are considered in detail, by examination of the nature of the solutions in the Laplace-transform domain. These problems correspond to various combinations of applied strain or stress as mechanical variables, and of applied temperature or heat flux as thermal variables. A system of classification of discontinuities is devised, which permits the results of the 16 problems to be extended to some general conclusions as to the character of the discontinuities in cases of arbitrary boundary conditions.


2009 ◽  
Vol 46 (2) ◽  
pp. 593-600 ◽  
Author(s):  
Svante Janson ◽  
Niclas Petersson

In this paper we study the integral of the supremum process of standard Brownian motion. We present an explicit formula for the moments of the integral (or area)(T) covered by the process in the time interval [0,T]. The Laplace transform of(T) follows as a consequence. The main proof involves a double Laplace transform of(T) and is based on excursion theory and local time for Brownian motion.


2012 ◽  
Vol 49 (2) ◽  
pp. 549-565 ◽  
Author(s):  
Lothar Breuer

In this paper we determine the distributions of occupation times of a Markov-modulated Brownian motion (MMBM) in separate intervals before a first passage time or an exit from an interval. We derive the distributions in terms of their Laplace transforms, and we also distinguish between occupation times in different phases. For MMBMs with strictly positive variation parameters, we further propose scale functions.


2011 ◽  
Vol 48 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Angelos Dassios ◽  
Shanle Wu

In this paper we study the excursion time of a Brownian motion with drift outside a corridor by using a four-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of double-barrier Parisian options. We subsequently obtain an explicit expression for the Laplace transform of its price.


2015 ◽  
Vol 52 (1) ◽  
pp. 191-208 ◽  
Author(s):  
David Landriault ◽  
Bin Li ◽  
Hongzhong Zhang

Drawdowns measuring the decline in value from the historical running maxima over a given period of time are considered as extremal events from the standpoint of risk management. To date, research on the topic has mainly focused on the side of severity by studying the first drawdown over a certain prespecified size. In this paper we extend the discussion by investigating the frequency of drawdowns and some of their inherent characteristics. We consider two types of drawdown time sequences depending on whether a historical running maximum is reset or not. For each type we study the frequency rate of drawdowns, the Laplace transform of the nth drawdown time, the distribution of the running maximum, and the value process at the nth drawdown time, as well as some other quantities of interest. Interesting relationships between these two drawdown time sequences are also established. Finally, insurance policies protecting against the risk of frequent drawdowns are also proposed and priced.


2003 ◽  
Vol 35 (1) ◽  
pp. 159-183 ◽  
Author(s):  
Michael Schröder

This paper studies the law of any real powers of the integral of geometric Brownian motion over finite time intervals. As its main results, an apparently new integral representation is derived and its interrelations with the integral representations for these laws originating by Yor and by Dufresne are established. In fact, our representation is found to furnish what seems to be a natural bridge between these other two representations. Our results are obtained by enhancing the Hartman-Watson Ansatz of Yor, based on Bessel processes and the Laplace transform, by complex analytic techniques. Systematizing this idea in order to overcome the limits of Yor's theory seems to be the main methodological contribution of the paper.


Sign in / Sign up

Export Citation Format

Share Document