scholarly journals On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations

2021 ◽  
pp. 2150048
Author(s):  
Christian Beck ◽  
Martin Hutzenthaler ◽  
Arnulf Jentzen

The classical Feynman–Kac identity builds a bridge between stochastic analysis and partial differential equations (PDEs) by providing stochastic representations for classical solutions of linear Kolmogorov PDEs. This opens the door for the derivation of sampling based Monte Carlo approximation methods, which can be meshfree and thereby stand a chance to approximate solutions of PDEs without suffering from the curse of dimensionality. In this paper, we extend the classical Feynman–Kac formula to certain semilinear Kolmogorov PDEs. More specifically, we identify suitable solutions of stochastic fixed point equations (SFPEs), which arise when the classical Feynman–Kac identity is formally applied to semilinear Kolmorogov PDEs, as viscosity solutions of the corresponding PDEs. This justifies, in particular, employing full-history recursive multilevel Picard (MLP) approximation algorithms, which have recently been shown to overcome the curse of dimensionality in the numerical approximation of solutions of SFPEs, in the numerical approximation of semilinear Kolmogorov PDEs.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yongjin Li ◽  
Kamal Shah

We develop a numerical method by using operational matrices of fractional order integrations and differentiations to obtain approximate solutions to a class of coupled systems of fractional order partial differential equations (FPDEs). We use shifted Legendre polynomials in two variables. With the help of the aforesaid matrices, we convert the system under consideration to a system of easily solvable algebraic equation of Sylvester type. During this process, we need no discretization of the data. We also provide error analysis and some test problems to demonstrate the established technique.


2011 ◽  
Vol 347-353 ◽  
pp. 463-466
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

The generalized differential transform method is implemented for solving time-fractional partial differential equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. Results obtained by using the scheme presented here agree well with the numerical results presented elsewhere. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.


1992 ◽  
Vol 15 (4) ◽  
pp. 663-672
Author(s):  
Lucas Jódar

In this paper coupled implicit initial-boundary value systems of second order partial differential equations are considered. Given a finite domain and an admissible errorϵan analytic approximate solution whose error is upper bounded byϵin the given domain is constructed in terms of the data.


Sign in / Sign up

Export Citation Format

Share Document