Solvable groups derived from hypergroups

2016 ◽  
Vol 15 (04) ◽  
pp. 1650067 ◽  
Author(s):  
M. Jafarpour ◽  
H. Aghabozorgi ◽  
B. Davvaz

In this paper, we introduce the smallest equivalence relation [Formula: see text] on a hypergroup [Formula: see text] such that the quotient [Formula: see text], the set of all equivalence classes, is a solvable group. The characterization of solvable groups via strongly regular relations is investigated and several results on the topic are presented.

2015 ◽  
Vol 61 (1) ◽  
pp. 109-122
Author(s):  
S.Sh. Mousavi ◽  
V. Leoreanu-Fotea ◽  
M. Jafarpour

Abstract We introduce a strongly regular equivalence relation ρ*A on the hypergroup H, such that in a particular case the quotient is a cyclic group. Then by using the notion of ρ*A-parts, we investigate the transitivity condition of ρA. Finally, a characterization of the derived hypergroup Dc(H) has been considered.


2021 ◽  
pp. 1-10
Author(s):  
Narjes Firouzkouhi ◽  
Abbas Amini ◽  
Chun Cheng ◽  
Mehdi Soleymani ◽  
Bijan Davvaz

Inspired by fuzzy hyperalgebras and fuzzy polynomial function (term function), some homomorphism properties of fundamental relation on fuzzy hyperalgebras are conveyed. The obtained relations of fuzzy hyperalgebra are utilized for certain applications, i.e., biological phenomena and genetics along with some elucidatory examples presenting various aspects of fuzzy hyperalgebras. Then, by considering the definition of identities (weak and strong) as a class of fuzzy polynomial function, the smallest equivalence relation (fundamental relation) is obtained which is an important tool for fuzzy hyperalgebraic systems. Through the characterization of these equivalence relations of a fuzzy hyperalgebra, we assign the smallest equivalence relation α i 1 i 2 ∗ on a fuzzy hyperalgebra via identities where the factor hyperalgebra is a universal algebra. We extend and improve the identities on fuzzy hyperalgebras and characterize the smallest equivalence relation α J ∗ on the set of strong identities.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiakuan Lu ◽  
Kaisun Wu ◽  
Wei Meng

AbstractLet 𝐺 be a finite group. An irreducible character of 𝐺 is called a 𝒫-character if it is an irreducible constituent of (1_{H})^{G} for some maximal subgroup 𝐻 of 𝐺. In this paper, we obtain some conditions for a solvable group 𝐺 to be 𝑝-nilpotent or 𝑝-closed in terms of 𝒫-characters.


2012 ◽  
Vol 26 (25) ◽  
pp. 1246006
Author(s):  
H. DIEZ-MACHÍO ◽  
J. CLOTET ◽  
M. I. GARCÍA-PLANAS ◽  
M. D. MAGRET ◽  
M. E. MONTORO

We present a geometric approach to the study of singular switched linear systems, defining a Lie group action on the differentiable manifold consisting of the matrices defining their subsystems with orbits coinciding with equivalence classes under an equivalence relation which preserves reachability and derive miniversal (orthogonal) deformations of the system. We relate this with some new results on reachability of such systems.


10.37236/5629 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

The existence of apparently coincidental equalities (also called Wilf-equivalences) between the enumeration sequences or generating functions of various hereditary classes of combinatorial structures has attracted significant interest. We investigate such coincidences among non-crossing matchings and a variety of other Catalan structures including Dyck paths, 231-avoiding permutations and plane forests. In particular we consider principal subclasses defined by not containing an occurrence of a single given structure. An easily computed equivalence relation among structures is described such that if two structures are equivalent then the associated principal subclasses have the same enumeration sequence. We give an asymptotic estimate of the number of equivalence classes of this relation among structures of size $n$ and show that it is exponentially smaller than the $n^{th}$ Catalan number. In other words these "coincidental" equalities are in fact very common among principal subclasses. Our results also allow us to prove in a unified and bijective manner several known Wilf-equivalences from the literature.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950074
Author(s):  
Xuewu Chang

The normal embedding problem of finite solvable groups into [Formula: see text]-groups was studied. It was proved that for a finite solvable group [Formula: see text], if [Formula: see text] has a special normal nilpotent Hall subgroup, then [Formula: see text] cannot be a normal subgroup of any [Formula: see text]-group; on the other hand, if [Formula: see text] has a maximal normal subgroup which is an [Formula: see text]-group, then [Formula: see text] can occur as a normal subgroup of an [Formula: see text]-group under some suitable conditions. The results generalize the normal embedding theorem on solvable minimal non-[Formula: see text]-groups to arbitrary [Formula: see text]-groups due to van der Waall, and also cover the famous counterexample given by Dade and van der Waall independently to the Dornhoff’s conjecture which states that normal subgroups of arbitrary [Formula: see text]-groups must be [Formula: see text]-groups.


2012 ◽  
Vol 56 (1) ◽  
pp. 303-336 ◽  
Author(s):  
Krzysztof Pawałowski ◽  
Toshio Sumi

AbstractFor any finite group G, we impose an algebraic condition, the Gnil-coset condition, and prove that any finite Oliver group G satisfying the Gnil-coset condition has a smooth action on some sphere with isolated fixed points at which the tangent G-modules are not isomorphic to each other. Moreover, we prove that, for any finite non-solvable group G not isomorphic to Aut(A6) or PΣL(2, 27), the Gnil-coset condition holds if and only if rG ≥ 2, where rG is the number of real conjugacy classes of elements of G not of prime power order. As a conclusion, the Laitinen Conjecture holds for any finite non-solvable group not isomorphic to Aut(A6).


1989 ◽  
Vol 41 (5) ◽  
pp. 830-854 ◽  
Author(s):  
B. Banaschewski ◽  
A. Pultr

A natural approach to topology which emphasizes its geometric essence independent of the notion of points is given by the concept of frame (for instance [4], [8]). We consider this a good formalization of the intuitive perception of a space as given by the “places” of non-trivial extent with appropriate geometric relations between them. Viewed from this position, points are artefacts determined by collections of places which may in some sense by considered as collapsing or contracting; the precise meaning of the latter as well as possible notions of equivalence being largely arbitrary, one may indeed have different notions of point on the same “space”. Of course, the well-known notion of a point as a homomorphism into 2 evidently fits into this pattern by the familiar correspondence between these and the completely prime filters. For frames equipped with a diameter as considered in this paper, we introduce a natural alternative, the Cauchy points. These are the obvious counterparts, for metric locales, of equivalence classes of Cauchy sequences familiar from the classical description of completion of metric spaces: indeed they are decreasing sequences for which the diameters tend to zero, identified by a natural equivalence relation.


1991 ◽  
Vol 34 (3) ◽  
pp. 423-425 ◽  
Author(s):  
You-Qiang Wang

AbstractLet G be a finite solvable group. Fix a prime integer p and let t be the number of distinct degrees of irreducible Brauer characters of G with respect to the prime p. We obtain the bound 3t — 2 for the derived length of a Hall p'-subgroup of G. Furthermore, if |G| is odd, then the derived length of a Hall p'-subgroup of G is bounded by /.


1958 ◽  
Vol 13 ◽  
pp. 135-156 ◽  
Author(s):  
Masahisa Adachi

In the papers [11] and [18] Rohlin and Thom have introduced an equivalence relation into the set of compact orientable (not necessarily connected) differentiable manifolds, which, roughly speaking, is described in the following manner: two differentiable manifolds are equivalent (cobordantes), when they together form the boundary of a bounded differentiable manifold. The equivalence classes can be added and multiplied in a natural way and form a graded algebra Ω relative to the addition, the multiplication and the dimension of manifolds. The precise structures of the groups of cobordism Ωk of dimension k are not known thoroughly. Thom [18] has determined the free part of Ω and also calculated explicitly Ωk for 0 ≦ k ≦ 7.


Sign in / Sign up

Export Citation Format

Share Document