The Krull and global dimension of the tensor product of quantum tori

2016 ◽  
Vol 15 (09) ◽  
pp. 1650174
Author(s):  
Ashish Gupta

An [Formula: see text]-dimensional quantum torus is defined as the [Formula: see text]-algebra generated by variables [Formula: see text] together with their inverses satisfying the relations [Formula: see text], where [Formula: see text]. The Krull and global dimensions of this algebra are known to coincide and the common value is equal to the supremum of the rank of certain subgroups of [Formula: see text] that can be associated with this algebra. In this paper we study how these dimensions behave with respect to taking tensor products of quantum tori over the base field. We derive a best possible upper bound for the dimension of such a tensor product and from this special cases in which the dimension is additive with respect to tensoring.

1975 ◽  
Vol 78 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Simon Wassermann

A deep result in the theory of W*-tensor products, the Commutation theorem, states that if M and N are W*-algebras faithfully represented as von Neumann algebras on the Hilbert spaces H and K, respectively, then the commutant in L(H ⊗ K) of the W*-tensor product of M and N coincides with the W*-tensor product of M′ and N′. Although special cases of this theorem were established successively by Misonou (2) and Sakai (3), the validity of the general result remained conjectural until the advent of the Tomita-Takesaki theory of Modular Hilbert algebras (6). As formulated, the Commutation theorem is a spatial result; that is, the W*-algebras in its statement are taken to act on specific Hilbert spaces. Not surprisingly, therefore, known proofs rely heavily on techniques of representation theory.


2020 ◽  
Vol 23 (5) ◽  
pp. 879-892
Author(s):  
S. Hadi Jafari ◽  
Halimeh Hadizadeh

AbstractLet G be a finite p-group, and let {\otimes^{3}G} be its triple tensor product. In this paper, we obtain an upper bound for the order of {\otimes^{3}G}, which sharpens the bound given by G. Ellis and A. McDermott, [Tensor products of prime-power groups, J. Pure Appl. Algebra 132 1998, 2, 119–128]. In particular, when G has a derived subgroup of order at most p, we classify those groups G for which the bound is attained. Furthermore, by improvement of a result about the exponent of {\otimes^{3}G} determined by G. Ellis [On the relation between upper central quotients and lower central series of a group, Trans. Amer. Math. Soc. 353 2001, 10, 4219–4234], we show that, when G is a nilpotent group of class at most 4, {\exp(\otimes^{3}G)} divides {\exp(G)}.


2011 ◽  
Vol 91 (3) ◽  
pp. 323-341 ◽  
Author(s):  
ASHISH GUPTA

AbstractWe show that the Gelfand–Kirillov dimension for modules over quantum Laurent polynomials is additive with respect to tensor products over the base field. We determine the Brookes–Groves invariant associated with a tensor product of modules. We study strongly holonomic modules and show that there are nonholonomic simple modules.


ISRN Algebra ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
A. S. Argáez

Let X be projective smooth variety over an algebraically closed field k and let ℰ, ℱ be μ-semistable locally free sheaves on X. When the base field is ℂ, using transcendental methods, one can prove that the tensor product is always a μ-semistable sheaf. However, this theorem is no longer true over positive characteristic; for an analogous theorem one needs the hypothesis of strong μ-semistability; nevertheless, this hypothesis is not a necessary condition. The objective of this paper is to construct, without the strongly μ-semistability hypothesis, a family of locally free sheaves with μ-stable tensor product.


2021 ◽  
Vol 8 (1) ◽  
pp. 48-59
Author(s):  
Fernanda Botelho ◽  
Richard J. Fleming

Abstract Given Banach spaces X and Y, we ask about the dual space of the 𝒧(X, Y). This paper surveys results on tensor products of Banach spaces with the main objective of describing the dual of spaces of bounded operators. In several cases and under a variety of assumptions on X and Y, the answer can best be given as the projective tensor product of X ** and Y *.


2021 ◽  
pp. 1-14
Author(s):  
R.M. CAUSEY

Abstract Galego and Samuel showed that if K, L are metrizable, compact, Hausdorff spaces, then $C(K)\widehat{\otimes}_\pi C(L)$ is c0-saturated if and only if it is subprojective if and only if K and L are both scattered. We remove the hypothesis of metrizability from their result and extend it from the case of the twofold projective tensor product to the general n-fold projective tensor product to show that for any $n\in\mathbb{N}$ and compact, Hausdorff spaces K1, …, K n , $\widehat{\otimes}_{\pi, i=1}^n C(K_i)$ is c0-saturated if and only if it is subprojective if and only if each K i is scattered.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


1980 ◽  
Vol 35 (9) ◽  
pp. 902-914
Author(s):  
J. Schupfner

Abstract We present a refined calculation method for the phonon part (Franck-Condon Overlaps) of the transition probabilities of electron-phonon radiative and non-radiative transitions in crystals. The evaluation of the thermal averaged Franck-Condon integrals is a purely algebraic method and the transition probabilities we use are derived from first principles and completely atomistic. For the electronic transitions we take into account the frequency shift of the lattice and the change of the phonon normal coordinates. Explicit formulae of the phonon parts are derived and it is shown that the common transition probabilities used in literature are special cases of our functional calculation technique.


10.37236/1030 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Sarah Iveson

In this paper we study inversions within restricted fillings of Young tableaux. These restricted fillings are of interest because they describe geometric properties of certain subvarieties, called Hessenberg varieties, of flag varieties. We give answers and partial answers to some conjectures posed by Tymoczko. In particular, we find the number of components of these varieties, give an upper bound on the dimensions of the varieties, and give an exact expression for the dimension in some special cases. The proofs given are all combinatorial.


2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0353
Author(s):  
K. A. Challab et al.

The concern of this article is the calculation of an upper bound of second Hankel determinant for the subclasses of functions defined by Al-Oboudi differential operator in the unit disc. To study special cases of the results of this article, we give particular values to the parameters A, B and λ


Sign in / Sign up

Export Citation Format

Share Document