On the semigroups of order-preserving transformations generated by idempotents of rank n −1

2017 ◽  
Vol 16 (02) ◽  
pp. 1750023
Author(s):  
Ping Zhao

Let [Formula: see text] be the semigroup of all singular order-preserving mappings on the finite set [Formula: see text]. It is known that [Formula: see text] is generated by its set of idempotents of rank [Formula: see text], and its rank and idempotent rank are [Formula: see text] and [Formula: see text], respectively. In this paper, we study the structure of the semigroup generated by any nonempty subset of idempotents of rank [Formula: see text] in [Formula: see text]. We also calculate its rank and idempotent rank.

2015 ◽  
Vol 93 (1) ◽  
pp. 73-91 ◽  
Author(s):  
IGOR DOLINKA ◽  
JAMES EAST ◽  
JAMES D. MITCHELL

We calculate the rank and idempotent rank of the semigroup ${\mathcal{E}}(X,{\mathcal{P}})$ generated by the idempotents of the semigroup ${\mathcal{T}}(X,{\mathcal{P}})$ which consists of all transformations of the finite set $X$ preserving a nonuniform partition ${\mathcal{P}}$. We also classify and enumerate the idempotent generating sets of minimal possible size. This extends results of the first two authors in the uniform case.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750138
Author(s):  
Ping Zhao ◽  
Taijie You ◽  
Huabi Hu

Let [Formula: see text] and [Formula: see text] be the partial transformation and the strictly partial transformation semigroups on the finite set [Formula: see text]. It is well known that the ranks of the semigroups [Formula: see text] and [Formula: see text] are [Formula: see text], for [Formula: see text], and [Formula: see text], for [Formula: see text], respectively. The idempotent rank, defined as the smallest number of idempotents generating set, of the semigroup [Formula: see text] has the same value as the rank. Idempotent can be seen as a special case (with [Formula: see text]) of [Formula: see text]-potent. In this paper, we determine the [Formula: see text]-potent ranks, defined as the smallest number of [Formula: see text]-potents generating set, of the semigroups [Formula: see text], for [Formula: see text], and [Formula: see text], for [Formula: see text].


1990 ◽  
Vol 114 (3-4) ◽  
pp. 161-167 ◽  
Author(s):  
John M. Howie ◽  
Robert B. McFadden

SynopsisThe subsemigroup Singn of singular elements of the full transformation semigroup on a finite set is generated by n(n − l)/2 idempotents of defect one. In this paper we extend this result to the subsemigroup K(n, r) consisting of all elements of rank r or less. We prove that the idempotent rank, defined as the cardinality of a minimal generating set of idempotents, of K(n, r) is S(n, r), the Stirling number of the second kind.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850036
Author(s):  
Ping Zhao ◽  
Taijie You ◽  
Huabi Hu

For [Formula: see text], let [Formula: see text] be the semigroup of all singular mappings on [Formula: see text]. For each nonempty subset [Formula: see text] of [Formula: see text], let [Formula: see text] be the semigroup of all [Formula: see text]-decreasing mappings on [Formula: see text]. In this paper we determine the rank and idempotent rank of the semigroup [Formula: see text].


2014 ◽  
Vol 21 (04) ◽  
pp. 653-662 ◽  
Author(s):  
Ping Zhao

For n ∈ ℕ, let On be the semigroup of all singular order-preserving mappings on [n]= {1,2,…,n}. For each nonempty subset A of [n], let On(A) = {α ∈ On: (∀ k ∈A) kα ≤ k} be the semigroup of all order-preserving and A-decreasing mappings on [n]. In this paper it is shown that On(A) is an abundant semigroup with n-1𝒟*-classes. Moreover, On(A) is idempotent-generated and its idempotent rank is 2n-2- |A\ {n}|. Further, it is shown that the rank of On(A) is equal to n-1 if 1 ∈ A, and it is equal to n otherwise.


2015 ◽  
Vol 25 (08) ◽  
pp. 1187-1222 ◽  
Author(s):  
Igor Dolinka ◽  
James East

The variant of a semigroup [Formula: see text] with respect to an element [Formula: see text], denoted [Formula: see text], is the semigroup with underlying set [Formula: see text] and operation ⋆ defined by [Formula: see text] for [Formula: see text]. In this paper, we study variants [Formula: see text] of the full transformation semigroup [Formula: see text] on a finite set [Formula: see text]. We explore the structure of [Formula: see text] as well as its subsemigroups [Formula: see text] (consisting of all regular elements) and [Formula: see text] (consisting of all products of idempotents), and the ideals of [Formula: see text]. Among other results, we calculate the rank and idempotent rank (if applicable) of each semigroup, and (where possible) the number of (idempotent) generating sets of the minimal possible size.


Author(s):  
P. A. B. Pleasants

This note is concerned with infinite sequences whose terms are chosen from a finite set of symbols. A segment of such a sequence is a set of one or more consecutive terms, and a repetition is a pair of finite segments that are adjacent and identical. A non-repetitive sequence is one that contains no repetitions.


2020 ◽  
Vol 28 (5) ◽  
pp. 727-738
Author(s):  
Victor Sadovnichii ◽  
Yaudat Talgatovich Sultanaev ◽  
Azamat Akhtyamov

AbstractWe consider a new class of inverse problems on the recovery of the coefficients of differential equations from a finite set of eigenvalues of a boundary value problem with unseparated boundary conditions. A finite number of eigenvalues is possible only for problems in which the roots of the characteristic equation are multiple. The article describes solutions to such a problem for equations of the second, third, and fourth orders on a graph with three, four, and five edges. The inverse problem with an arbitrary number of edges is solved similarly.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jose J. Silva ◽  
Jose R. Espinoza ◽  
Jaime A. Rohten ◽  
Esteban S. Pulido ◽  
Felipe A. Villarroel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document