scholarly journals Defining Relations and Grobner-Shirshov Bases of Poisson Algebras as of Conformal Modules

Author(s):  
P. S. Kolesnikov ◽  
A. S. Panasenko
2002 ◽  
Vol 17 (17) ◽  
pp. 2331-2349 ◽  
Author(s):  
GERRIT HANDRICH

To postulate correspondence for the observables only is a promising approach to a fully satisfying quantization of the Nambu–Goto string. The relationship between the Poisson algebra of observables and the corresponding quantum algebra is established in the language of generators and relations. A very valuable tool is the transformation to the string's rest frame, since a substantial part of the relations are solved. It is the aim of this paper to clarify the relationship between the fully covariant and the rest frame description. Both in the classical and in the quantum case, an efficient method for recovering the covariant algebra from the one in the rest frame is described. Restrictions on the quantum defining relations are obtained, which are not taken into account when one postulates correspondence for the rest frame algebra. For the part of the algebra studied up to now in explicit computations, these further restrictions alone determine the quantum algebra uniquely — in full consistency with the further restrictions found in the rest frame.


2009 ◽  
Vol 19 (03) ◽  
pp. 287-303 ◽  
Author(s):  
ISABEL GOFFA ◽  
ERIC JESPERS ◽  
JAN OKNIŃSKI

Let A be a finitely generated commutative algebra over a field K with a presentation A = K 〈X1,…, Xn | R〉, where R is a set of monomial relations in the generators X1,…, Xn. So A = K[S], the semigroup algebra of the monoid S = 〈X1,…, Xn | R〉. We characterize, purely in terms of the defining relations, when A is an integrally closed domain, provided R contains at most two relations. Also the class group of such algebras A is calculated.


2022 ◽  
Vol 275 (1352) ◽  
Author(s):  
Bernhard Mühlherr ◽  
Richard Weiss ◽  
Holger Petersson

We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a “rank  2 2 ” presentation for the group of F F -rational points of an arbitrary exceptional simple group of F F -rank at least  4 4 and to determine defining relations for the group of F F -rational points of an an arbitrary group of F F -rank  1 1 and absolute type D 4 D_4 , E 6 E_6 , E 7 E_7 or E 8 E_8 associated to the unique vertex of the Dynkin diagram that is not orthogonal to the highest root. All of these results are over a field of arbitrary characteristic.


2017 ◽  
Vol 19 (7) ◽  
pp. 2019-2049 ◽  
Author(s):  
Jason Bell ◽  
Stéphane Launois ◽  
Omar León Sánchez ◽  
Rahim Moosa

2019 ◽  
Vol 136 ◽  
pp. 156-172 ◽  
Author(s):  
Joakim Arnlind ◽  
Ahmed Al-Shujary
Keyword(s):  

1982 ◽  
pp. 155-159
Author(s):  
D.G. Arrell ◽  
S. Manrai ◽  
M.F. Worboys
Keyword(s):  

2018 ◽  
Vol 15 (11) ◽  
pp. 1850190 ◽  
Author(s):  
Viktor Abramov

We propose an extension of [Formula: see text]-ary Nambu–Poisson bracket to superspace [Formula: see text] and construct by means of superdeterminant a family of Nambu–Poisson algebras of even degree functions, where the parameter of this family is an invertible transformation of Grassmann coordinates in superspace [Formula: see text]. We prove in the case of the superspaces [Formula: see text] and [Formula: see text] that our [Formula: see text]-ary bracket, defined with the help of superdeterminant, satisfies the conditions for [Formula: see text]-ary Nambu–Poisson bracket, i.e. it is totally skew-symmetric and it satisfies the Leibniz rule and the Filippov–Jacobi identity (fundamental identity). We study the structure of [Formula: see text]-ary bracket defined with the help of superdeterminant in the case of superspace [Formula: see text] and show that it is the sum of usual [Formula: see text]-ary Nambu–Poisson bracket and a new [Formula: see text]-ary bracket, which we call [Formula: see text]-bracket, where [Formula: see text] is the product of two odd degree smooth functions.


Sign in / Sign up

Export Citation Format

Share Document