EXCITED-STATE INTRAMOLECULAR ELECTRON TRANSFER COUPLED WITH EXCITED-STATE INTRAMOLECULAR PROTON TRANSFER IN PHOTOINDUCED ENOL TO KETO TAUTOMERIZATION

2009 ◽  
Vol 08 (supp01) ◽  
pp. 1073-1086
Author(s):  
YUANZUO LI ◽  
SHASHA LIU ◽  
LILI ZHAO ◽  
MAODU CHEN ◽  
FENGCAI MA ◽  
...  

In this paper, the two-dimensional (2D) site and the three-dimensional (3D) cube representations [Sun MT, J Chem Phys124: 054903, 2006] have been further developed to study the charge transfer during excited-state relaxation. With these newly developed representations, we theoretically investigate the excited-state intramolecular electron transfer (ESIET) in enol excited-state geometry relaxation, and ESIET coupled with excited-state intramolecular proton transfer (ESIPT) in phototautomerization (in enol to keto transformation). The energy levels of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of HBODC in enol and keto absorption and fluorescence are compared to understand photoinduced ESIET and ESIPT process. The excited regions of molecule (where arrangement of electron density takes place during excited-state relaxation) are located with 2D site representation. 3D cube representations visualize the character of charge transfer (CT) in those regions. Results of the research indicate that the ability of charge transfer during enol excited-state geometry relaxation is much stronger than that in phototautomerization.

RSC Advances ◽  
2018 ◽  
Vol 8 (52) ◽  
pp. 29589-29597 ◽  
Author(s):  
Jianhui Han ◽  
Xiaochun Liu ◽  
Chaofan Sun ◽  
You Li ◽  
Hang Yin ◽  
...  

Harnessing ingenious modification of molecular structure to regulate excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) characteristics holds great promise in fluorescence sensing and imaging.


2018 ◽  
Vol 74 (2) ◽  
pp. 171-176
Author(s):  
Peili Sun ◽  
Zongyao Zhang ◽  
Hongxia Luo ◽  
Pu Zhang ◽  
Yujun Qin ◽  
...  

A dimerized 1,3-diazaazulene derivative, namely 1,4-bis(1,3-diazaazulen-2-yl)benzene [or 2,2′-(1,4-phenylene)bis(1,3-diazaazulene)], C22H14N4, (I), has been synthesized successfully through the condensation reaction between 2-methoxytropone and benzene-1,4-dicarboximidamide hydrochloride, and was characterized by 1H NMR and 13C NMR spectroscopies, and ESI–MS. X-ray diffraction analysis reveals that (I) has a nearly planar structure with good π-electron delocalization, indicating that it might serve as a π building block. The crystal belongs to the monoclinic system. One-dimensional chains were formed along the a axis through π–π interactions and adjacent chains are stabilized by C—H...N interactions, forming a three-dimensional architecture. The solid emission of (I) in the crystalline form exhibited a 170 nm red shift compared with that in the solution state. The observed optical bandgap for (I) is 3.22 eV and a cyclic voltammetry experiment confirmed the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The calculated bandgap for (I) is 3.37 eV, which is very close to the experimental result. In addition, the polarizability and hyperpolarizability of (I) were appraised for its further application in second-order nonlinear optical materials.


Sign in / Sign up

Export Citation Format

Share Document