INSIGHTS INTO THE SOLVATO-/THERMO-PROMOTED INTRAMOLECULAR ELECTRON TRANSFER IN A TTF-σ-TCNQ DYAD WITH AN EXTREMELY LOW HOMO–LUMO GAP

2012 ◽  
Vol 11 (03) ◽  
pp. 599-609 ◽  
Author(s):  
YUHUA ZHOU ◽  
KAI TAN ◽  
XIN LU

The low-lying states of an organic donor-σ-acceptor dyad, i.e. tetrathiafulvalene-σ-tetracyano-p-quinodimethane (TTF-σ-TCNQ), in gas phase and in various solvents have been investigated by means of hybrid DFT calculations in combination with the conductor-like polarizable continuum model to describe solvent effects. It has been shown that the dyad, though preferring a closed-shell singlet ground state with an eclipsed conformation in gas phase, adopts the charge-separated zwitterionic states with an extended conformation (TTF+-σ-TCNQ-), i.e. open-shell singlet biradical ground state immediately followed by triplet biradical state, in polar solvent ( CH3CN and CH2Cl2 ) as a result of the intramolecular electron transfer (ET) stimulated by solvent polarization. The degree of such intramolecular ET is so strongly dependent on the polarity (dielectric constant) of solvent that the zwitterionic biradical states become more stable with respect to the closed-shell singlet state with increasing polarity of the solvent. As such, the dyad should show a higher ratio of biradicals in more polar solvent and/or at higher temperature and, hence, is chameleonic in nature.

2021 ◽  
Author(s):  
Zhongxin Chen ◽  
Yuan Li ◽  
Wenqiang Li ◽  
Weiya Zhu ◽  
Miao Zeng ◽  
...  

The active materials of organic solar cells are widely recognized to show closed-shell singlet ground state and their electron spin resonance signals are attributed to the defects and impurities. Herein, we disclose the inherent open-shell singlet ground state of donors and the closed-shell structure of acceptors via the combination of variable temperature NMR, electron spin resonance, superconducting quantum interference device and theoretical calculation, providing a new perspective to understand the intrinsic molecular structure in organic solar cells.


2021 ◽  
Author(s):  
Zhongxin Chen ◽  
Yuan Li ◽  
Wenqiang Li ◽  
Weiya Zhu ◽  
Miao Zeng ◽  
...  

The active materials of organic solar cells are widely recognized to show closed-shell singlet ground state and their electron spin resonance signals are attributed to the defects and impurities. Herein, we disclose the inherent open-shell singlet ground state of donors and the closed-shell structure of acceptors via the combination of variable temperature NMR, electron spin resonance, superconducting quantum interference device and theoretical calculation, providing a new perspective to understand the intrinsic molecular structure in organic solar cells.


2016 ◽  
Vol 7 (2) ◽  
pp. 1142-1150 ◽  
Author(s):  
David A. Hrovat ◽  
Gao-Lei Hou ◽  
Bo Chen ◽  
Xue-Bin Wang ◽  
Weston Thatcher Borden

The CO3 radical anion (CO3˙−) has been formed by electrospraying carbonate dianion (CO32−) into the gas phase.


2001 ◽  
Vol 665 ◽  
Author(s):  
P.A. van Hal ◽  
R.A.J. Janssen ◽  
G. Lanzani ◽  
G. Cerullo ◽  
M. Zavelani-Rossi ◽  
...  

ABSTRACTThe intramolecular photoinduced energy and electron transfer within a fullereneoligothiophene-fullerene triad with nine thiophene units (C60-9T-C60) and an oligo(p-phenylene vinylene)-fullerene dyad with four phenyl groups (OPV4-C60) is investigated with femtosecond pump-probe spectroscopy with sub-10 fs and 200 fs time resolution in solvents of different polarity. Photoexcitation of the π-conjugated oligomer moiety in the triad and dyad results in an ultrafast singlet-energy transfer reaction to create the fullerene singlet-excited state with a time constant of 150-190 fs, irrespective of the polarity of the medium. In a polar solvent, intramolecular electron transfer occurs from the oligomer moiety to the C60 moiety with a time constant of 10-13 ps as a secondary reaction, subsequent to the ultrafast singlet-energy transfer. The charge-separated state has a lifetime of 50-80 ps and recombines to the ground state.


2017 ◽  
Vol 129 (12) ◽  
pp. 3328-3332 ◽  
Author(s):  
Ji Ma ◽  
Junzhi Liu ◽  
Martin Baumgarten ◽  
Yubin Fu ◽  
Yuan-Zhi Tan ◽  
...  

2005 ◽  
Vol 44 (44) ◽  
pp. 7277-7280 ◽  
Author(s):  
Shinsuke Nishida ◽  
Yasushi Morita ◽  
Kozo Fukui ◽  
Kazunobu Sato ◽  
Daisuke Shiomi ◽  
...  

2005 ◽  
Vol 117 (44) ◽  
pp. 7443-7446 ◽  
Author(s):  
Shinsuke Nishida ◽  
Yasushi Morita ◽  
Kozo Fukui ◽  
Kazunobu Sato ◽  
Daisuke Shiomi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document