QUASICLASSICAL TRAJECTORY STUDY OF STEREODYNAMICS FOR THE REACTIONS Li+HF/DF/TF

2013 ◽  
Vol 12 (03) ◽  
pp. 1350008
Author(s):  
JIE CHENG ◽  
XIAN-FANG YUE

Stereodynamics of the reaction Li + HF (v = 0,j = 0) → LiF + H and its isotopic variants on the ground electronic state (12A′) potential energy surface (PES) are studied by employing the quasiclassical trajectory (QCT) method. At a collision energy of 2.2 kcal/mol, product rotational angular momentum distributions, P(θr) and P(ϕr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y-axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS00 distribution shows a sideways scattering for the reaction Li + HF and a strongly backward scattering for the reaction Li + DF . However, it displays both the forward and backward scatterings for the reaction Li + TF . These features demonstrate that the Li + HF and Li + DF reactions proceed predominantly through the direct reaction mechanism. However, the Li + TF reaction undergoes both the direct and indirect reaction mechanisms. The PDDCS21- distribution indicates that the product angular distributions are anisotropic.

2010 ◽  
Vol 09 (05) ◽  
pp. 935-943 ◽  
Author(s):  
PENG SONG ◽  
YONG-HUA ZHU ◽  
JIAN-YONG LIU ◽  
FENG-CAI MA

The stereodynamics of the title reaction on the ground electronic state X2A' potential energy surface (PES)1 has been studied using the quasiclassical trajectory (QCT) method. The commonly used polarization-dependent differential cross-sections (PDDCSs) of the product and the angular momentum alignment distribution, P(θr) and P(Φr), are generated in the center-of-mass frame using QCT method to gain insight of the alignment and orientation of the product molecules. Influence of collision energy on the stereodynamics is shown and discussed. The results reveal that the distribution of P(θr) and P(Φr) is sensitive to collision energy. The PDDCSs exhibit different collision energy dependency relationship at low and high collision energy ranges.


2014 ◽  
Vol 13 (01) ◽  
pp. 1450002
Author(s):  
Ruifeng Lu ◽  
Zhenyu Xu ◽  
Yunhui Wang

The quasi-classical trajectory method has been employed to investigate the initial vibrational and rotational effects of the title reaction on an improved ab initio potential energy surface for the 11A′ state. Meanwhile, isotopic effect has also been studied at collision energy of 19 kcal/mol. The product rotational alignment factor 〈P2(j′ • k)〉, angular distributions of P(ϕr), P(θr) and the generalized polarization dependent differential cross-sections have been calculated. The- results show that the reagent vibrational excitation generally strengthens the product alignment perpendicular to the reagent relative velocity vector k and affects the product scattering preference, and the rotational excitation has the same trend from j = 0 to 2 except for the higher excitation of j = 3. Further, the substitution of atom H with D leads to a stronger product alignment while changes some stereodynamical properties subtly.


2010 ◽  
Vol 88 (12) ◽  
pp. 899-904 ◽  
Author(s):  
Juanjuan Lv ◽  
Xinguo Liu ◽  
Jingjuan Liang ◽  
Haizhu Sun

Theoretical study of the stereo-dynamics of the reaction, H + HeH+ (v = 0,  j = 0) → H 2+  + He, have been performed with quasi-classical trajectory (QCT) method at different collision energies on a new ab initio potential energy surface. The distributions of P(θr), P(ϕr) and four generalized polarization-dependent differential cross-sections have been calculated. The results indicate that both the orientation and alignment of the rotational angular momentum are impacted by collision energies. With the collision energy increases, the rotation of the product molecule has a preference of changing from the “in-plane” reaction mechanism to the “out-of-plane” mechanism. Although the reaction is mainly dominated by the direct reaction mechanism, the indirect mechanism plays a role while the collision energy is very low.


2012 ◽  
Vol 11 (03) ◽  
pp. 663-674 ◽  
Author(s):  
XIAN-FANG YUE ◽  
PEI FENG

Quasiclassical trajectory (QCT) calculations for the title reaction are carried out by employing the recent developed accurate potential energy surface of the 12A′ ground state. Two angular distributions, P(θr) and P(ϕr), with θr, ϕr being the polar angles of the product angular momentum, and two commonly used polarization dependent differential cross sections, (2π/σ)(dσ00/dωt) and (2π/σ)(dσ20/dωt), with ωt being the polar coordinates of the product velocity, are generated in the center-of-mass frame. It was found that the product rotational angular momentum j′ is not only aligned, but also oriented along the negative direction of y-axis. We also investigated the product state distributions in the present work, and found that the vibrational and rotational state distributions are inverted. Influences of collision energies on the product polarization and state distributions are also shown and discussed.


2009 ◽  
Vol 08 (supp01) ◽  
pp. 1045-1051
Author(s):  
YAN QI ◽  
ZHI-XIN DUAN

Using quasi-classical trajectory (QCT) method, the vector correlation between products and reagents for the exothermic reaction Ba + CH3I → BaI + CH3 has been studied on the extended Lond–Eyring–Polanyi–Sato (LEPS) potential energy surface (PES) at three collision energies of 1.6, 3.3, and 5.6 kcal/mol. The P(θr) distribution of the products describing the k-j' correlation and the dihedral angle distribution P(ϕr) describing k-k'-j' correlation are calculated in center-of-mass (CM) frame. Four polarization dependent generalized differential cross-sections (2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), and (2π/σ)(dσ21-/dωt) have also been presented in the CM frame as well. The results indicate that the product rotational angular momentum j' is not only aligned, but also oriented along the direction perpendicular to the scattering plane. In addition, the alignment and the orientation of the BaI product rotational angular momentum depend very sensitively on the collision energy.


2011 ◽  
Vol 10 (01) ◽  
pp. 1-7 ◽  
Author(s):  
QIANG WEI ◽  
YING KE XIE ◽  
WEN LIN FENG

Quasi-classical trajectory (QCT) method is used to study the stereo-dynamics of the title reaction on the ground 1 1A′ potential energy surface (PES). Differential cross-sections (DCSs) and alignments of the product rotational angular momentum for the reaction are reported. The influence of collision energy on the product vector properties is also studied in the present work. The distribution of angle between k and j′, P(θr), the distribution of dihedral angle denoting k-k′-j′ correlation, P(ϕr) ⋅ (2π/σ)( d σ00/ d ωt), (2π/σ)( d σ20/ d ωt), (2π/σ)( d σ22+/ d ωt) and (2π/σ)(dσ21-/dωt) have been calculated in the center of mass frame, respectively.


2018 ◽  
Vol 96 (8) ◽  
pp. 926-932 ◽  
Author(s):  
Guan-Qing Ren ◽  
Ai-Ping Fu ◽  
Shu-Ping Yuan ◽  
Tian-Shu Chu

To investigate the dynamics mechanism of the Br + HgBr → Br2 + Hg reaction, the quasi-classical trajectory calculations are performed on Balabanov’s potential energy surface (PES) of ground electronic state. Both the scalar and vector properties are investigated to recognize the dynamics of the title reaction. Reaction probability for the total angular momentum quantum number J = 0 is determined at the collision energies (denoted as Ec) in a range of 1–25 kcal/mol, and the product vibrational distributions are given and compared between Ec = 20 and 40 kcal/mol. Other calculation values characterizing product polarizations including polarization-dependent differential cross sections (PDDCSs), distributions of P(θr), P([Formula: see text]), and P(θr, [Formula: see text]), are all discussed and compared between the two different collision energies in detail to analyze the alignment and orientation characteristics. It is revealed that the products prefer forward scattering and the PDDCSs are anisotropic in the whole range of the scattering angle. The product rotational angular momentum j′ shows a tendency to align perpendicular to the reagent relative velocity k. In fact, the product polarization of the title reaction is weak at both collision energies. In terms of horizontal comparison, the alignment is slightly stronger but the orientation is even less remarkable at higher collision energy.


2012 ◽  
Vol 11 (05) ◽  
pp. 1005-1018 ◽  
Author(s):  
SHANSHAN NIE ◽  
TIANSHU CHU

The vector correlations between products and reagents of the N (2D) + D 2 reaction are investigated by employing quasi-classical trajectory (QCT) calculation on the accurate DMBE potential energy surface (PES) of the 2A″ state. Stereo-dynamic quantities, including the four generalized polarization-dependent differential cross-sections (PDDCSs), the angular distribution P(θr), the dihedral-angle distribution P(φr), as well as the product rotational angular distribution in the polar form of P(θr, φr), are calculated in the center-of-mass (CM) frame. The results indicate that the product rotational angular momentum j′ not only aligns along the y-axis, but also orients to the negative direction of the y-axis. The isotope effect in the context of chemical stereo-dynamics and influences of different versions of ground-state PESs on vector correlations are shown and discussed.


2012 ◽  
Vol 11 (06) ◽  
pp. 1297-1310 ◽  
Author(s):  
LIN LI ◽  
SHUNLE DONG

Based on the DMBE potential surface of the 4 A ″ ground-state, the product rotational polarizations in the title reaction are studied by using quasiclassical trajectory (QCT) calculation method. Three angular distributions of P(θr), P(Φr), P(θr, Φr) and the four polarization-dependent differential cross sections (PDDCSs) were calculated for the collision energy range of 1–20 kcal/mol. The results revealed that the product is backward-scattering and the product rotational angular momentum j′ is aligned and oriented. With the increment of collision energy, the degree of the product alignment and orientation is enhanced, showing the collision energy-dependent behaviors of the product polarizations.


2012 ◽  
Vol 11 (01) ◽  
pp. 87-97 ◽  
Author(s):  
YINGYING CHEN ◽  
MEIYU ZHAO

Quasi-Classical Trajectory (QCT) calculations have been carried out to study the stereodynamics of the reactions N + NH → N 2 + H and isotopic effects on the product polarization at collision energies of 10.0 kcal/mol and 25.0 kcal/mol which proceed on the Double-Many-Body-Expansion (DMBE) potential energy surface. The distribution of dihedral angle P(ϕr), and the distribution of angle between k and j′, P(θr) are discussed in detail. Furthermore, four generalized polarization dependent differential cross sections (PDDCSs) (2π/σ)(dσ00/dω), (2π/σ)(dσ20/dω), (2π/;σ)(dσ22+/dω), and (2π/σ)(dσ21 -∕dω) are presented. The results reveal that isotope effect plays an important role for P(ϕr) and P(θr) distribution, and the PDDCSs exhibit similar collision energy dependency relationship at low and high collision energies.


Sign in / Sign up

Export Citation Format

Share Document