Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO–LUMO and NLO properties of 2-nitroacetophenone based on DFT calculations

2016 ◽  
Vol 15 (01) ◽  
pp. 1650007 ◽  
Author(s):  
G. Venkatesh ◽  
M. Govindaraju ◽  
P. Vennila ◽  
C. Kamal

The FT-IR and FT-Raman analyses of 2-nitro acetophenone (2NAP) have been carried out by density functional theory (DFT) calculations based on B3LYP level with 6-31G*/6-311[Formula: see text]G** basis set. The gauge-independent atomic orbital (GIAO) method has been used to get 1H NMR and [Formula: see text]C NMR chemical shifts. From DFT calculations, various parameters such as atomic charges, HOMO–LUMO energies and Dipole moment have been obtained. The molecular electronic potential (MEP) has also been derived for 2NAP. In order to find the electronic excitation energies, oscillator strength and nature of the respective excited states, the closed-shell singlet calculation has been utilized. MOLVIB program has been employed to calculate total energy distribution (TED) and normal coordinate analysis. Natural bond orbital (NBO) analysis has also been carried out by DFT calculations with B3LYP/6-311[Formula: see text]G** basis set.

2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.


2017 ◽  
Vol 1 (3) ◽  
pp. 1-37
Author(s):  
D. Sumathi ◽  
H. Saleem ◽  
A. Nathiya ◽  
N. RameshBabu ◽  
D. Usha

A combined experimental and theoretical study on molecular and vibrational structure of E-N¢ (ICINH) had been carried out. The FTIR, FT-Raman and UV-Vis spectra of ICINH were recorded in the solid phase. The optimized geometry was calculated by B3LYP method with 6-311++G(d,p) level of basis set. The harmonic vibrational frequencies, IR intensities and Raman scattering activities of the title compound were calculated at same level of theory. The scaled theoretical wavenumber showed very good agreement with the experimental values. The mulliken charges and thermodynamic functions of the ICINH were also performed at same level of theory. NLO and a study on the electronic properties such as excitation energies and wavelength, were performed by TD-DFT approach. HOMO–LUMO energy gap was also calculated and interpreted.


2017 ◽  
Vol 15 (1) ◽  
pp. 225-237 ◽  
Author(s):  
Maha S. Almutairi ◽  
S. Muthu ◽  
Johanan C. Prasana ◽  
B. Chandralekha ◽  
Alwah R. Al-Ghamdi ◽  
...  

AbstractFourier transform infrared (FT-IR) and FT-Raman spectra of 1-acetyl-1H-indole-2,3-dione (N-acetylisatin) were recorded in the solid phase and analyzed. The molecular geometry, vibrational frequencies, infrared intensities, Raman activities and atomic charges were calculated using density functional theory (DFT/B3LYP) calculations with a standard 6-311++G(d,p) basis set. The fundamental vibrational modes of N-acetylisatin were analyzed and fully assigned with the aid of the recorded FT-IR and FT-Raman spectra. The simulated FT-IR and FT-Raman spectra showed good agreement with the experimental spectra. The stability of the molecule, arising from hyper-conjugative interactions and charge delocalization, was analyzed using natural bond orbital (NBO) analysis. The dipole moment (µ), polarization (α) and hyperpolarization (β) values of N-acetylisatin were also computed. The potential energy distribution (PED) was computed for the assignment of unambiguous vibrational fundamental modes. The HOMO and LUMO energy gap illustrated the chemical activity of N-acetylisatin. The energy and oscillator strength were calculated by DFT. Gauge–including atomic orbital NMR (1H and 13C) chemical shift calculations were performed and compared with the experimental values. Thermodynamic properties (heat capacity, entropy and enthalpy) of the compound at different temperatures were also calculated.


2019 ◽  
Vol 10 (2) ◽  
pp. 95-101
Author(s):  
Sebile Işık Büyükekşi ◽  
Namık Özdemir ◽  
Abdurrahman Şengül

A versatile synthetic building block, 2-amino-1,10-phenanthrolin-1-ium chloride (L∙HCl) was synthesized and characterized by IR, 1H and 13C NMR DEPT analysis, UV/Vis and single-crystal X-ray diffraction technique. The molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts values of the title compound in the ground state were obtained by using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and compared with the experimental data. Electronic absorption spectrum of the salt was determined using the time-dependent density functional theory (TD-DFT) method at the same level. In the NMR and electronic absorption spectra calculations, the effect of solvent on the theoretical parameters was included using the default model with DMSO as solvent. The obtained theoretical parameters agree well with the experimental findings.


2018 ◽  
Vol 9 (2) ◽  
pp. 74-78 ◽  
Author(s):  
Bushra Kamil Al-Salami

We have synthesized and characterized a series of carbothioamide derivatived molecules, obtained by reaction of aromatic aldehyde (Anisaldehyde, 9-anthraldehyde, cinnamaldehyde, indole-3-carboxaldehyde, 1-naphthaldehyde and o-vanillin) with an equimolar amount of 4-phenylthiosemicarbazide with microwave irradiation. The synthesized compounds have been characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Quantum calculations of the physical properties, based on density functional theory method at B3LYP/6-31+G(d,p) level of theory, were performed, by means of the Gaussian 09W set of programs. The theoretical 1H NMR chemical shift results of the studied compounds have been calculated at B3LYP method and standard 6-31+G(d,p) basis set using the standard Gauge-Independent Atomic Orbital approach. The calculated values are also compared with the experimental data available for these molecules. A good linear relationship between the experimental and calculated data has been obtained.


2018 ◽  
Vol 6 (1) ◽  
pp. 53
Author(s):  
Nathiya A ◽  
Saleem H ◽  
Bharanidharan Bharani ◽  
Suresh M

FT-IR (4000-400 cm-1) and FT-Raman (3500-50 cm-1) spectra of (E)-N'(thiophen-2yl methylene)isonicotinohydrazide (TMINH) molecule was recorded in solid phase. The optimized geometry was calculated by B3LYP method with 6-311++G(d,p) basis set. The harmonic vibrational frequencies, infrared (IR) intensities and Raman scattering activities of the title compound were performed at same level of theory. The complete vibrational assignments were performed on the basis of the Total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The calculated first hyperpolarizability may be attractive for further studies on non-linear optical (NLO) properties of material. Stability of the molecule arising from hyperconjugative interaction and charge delocalization was analyzed using natural bond orbital (NBO) analysis. Highest occupied molecular orbital-Lowest unoccupied molecular orbital (HOMO-LUMO) energy gap explains the eventual charge transfer interactions taking place within the title molecule. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent (TD-DFT) approach. Molecular electrostatic potential (MEP) provides the information on the electrophilic, nucleophilic and free radical prone reactive sites of the molecule. The thermodynamic properties such as heat capacity, entropy and enthalpy of the title compound were calculated at different temperatures in gas phase. 1H and 13C-NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital (GIAO) method.To establish information about the interactions between human cytochrome protein and this novel compound theoretically, docking studies were carried out using Schrödinger software.


Sign in / Sign up

Export Citation Format

Share Document