scholarly journals Synthesis and vibrational spectral (FT-IR, FT-Raman) studies, NLO properties & NBO analysis of (E)-N'(thiophen-2yl methylene)isonicotinohydrazide using quantum chemical method

2018 ◽  
Vol 6 (1) ◽  
pp. 53
Author(s):  
Nathiya A ◽  
Saleem H ◽  
Bharanidharan Bharani ◽  
Suresh M

FT-IR (4000-400 cm-1) and FT-Raman (3500-50 cm-1) spectra of (E)-N'(thiophen-2yl methylene)isonicotinohydrazide (TMINH) molecule was recorded in solid phase. The optimized geometry was calculated by B3LYP method with 6-311++G(d,p) basis set. The harmonic vibrational frequencies, infrared (IR) intensities and Raman scattering activities of the title compound were performed at same level of theory. The complete vibrational assignments were performed on the basis of the Total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The calculated first hyperpolarizability may be attractive for further studies on non-linear optical (NLO) properties of material. Stability of the molecule arising from hyperconjugative interaction and charge delocalization was analyzed using natural bond orbital (NBO) analysis. Highest occupied molecular orbital-Lowest unoccupied molecular orbital (HOMO-LUMO) energy gap explains the eventual charge transfer interactions taking place within the title molecule. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent (TD-DFT) approach. Molecular electrostatic potential (MEP) provides the information on the electrophilic, nucleophilic and free radical prone reactive sites of the molecule. The thermodynamic properties such as heat capacity, entropy and enthalpy of the title compound were calculated at different temperatures in gas phase. 1H and 13C-NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital (GIAO) method.To establish information about the interactions between human cytochrome protein and this novel compound theoretically, docking studies were carried out using Schrödinger software.

2017 ◽  
Vol 1 (3) ◽  
pp. 1-37
Author(s):  
D. Sumathi ◽  
H. Saleem ◽  
A. Nathiya ◽  
N. RameshBabu ◽  
D. Usha

A combined experimental and theoretical study on molecular and vibrational structure of E-N¢ (ICINH) had been carried out. The FTIR, FT-Raman and UV-Vis spectra of ICINH were recorded in the solid phase. The optimized geometry was calculated by B3LYP method with 6-311++G(d,p) level of basis set. The harmonic vibrational frequencies, IR intensities and Raman scattering activities of the title compound were calculated at same level of theory. The scaled theoretical wavenumber showed very good agreement with the experimental values. The mulliken charges and thermodynamic functions of the ICINH were also performed at same level of theory. NLO and a study on the electronic properties such as excitation energies and wavelength, were performed by TD-DFT approach. HOMO–LUMO energy gap was also calculated and interpreted.


2017 ◽  
Vol 15 (1) ◽  
pp. 225-237 ◽  
Author(s):  
Maha S. Almutairi ◽  
S. Muthu ◽  
Johanan C. Prasana ◽  
B. Chandralekha ◽  
Alwah R. Al-Ghamdi ◽  
...  

AbstractFourier transform infrared (FT-IR) and FT-Raman spectra of 1-acetyl-1H-indole-2,3-dione (N-acetylisatin) were recorded in the solid phase and analyzed. The molecular geometry, vibrational frequencies, infrared intensities, Raman activities and atomic charges were calculated using density functional theory (DFT/B3LYP) calculations with a standard 6-311++G(d,p) basis set. The fundamental vibrational modes of N-acetylisatin were analyzed and fully assigned with the aid of the recorded FT-IR and FT-Raman spectra. The simulated FT-IR and FT-Raman spectra showed good agreement with the experimental spectra. The stability of the molecule, arising from hyper-conjugative interactions and charge delocalization, was analyzed using natural bond orbital (NBO) analysis. The dipole moment (µ), polarization (α) and hyperpolarization (β) values of N-acetylisatin were also computed. The potential energy distribution (PED) was computed for the assignment of unambiguous vibrational fundamental modes. The HOMO and LUMO energy gap illustrated the chemical activity of N-acetylisatin. The energy and oscillator strength were calculated by DFT. Gauge–including atomic orbital NMR (1H and 13C) chemical shift calculations were performed and compared with the experimental values. Thermodynamic properties (heat capacity, entropy and enthalpy) of the compound at different temperatures were also calculated.


2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.


2017 ◽  
Vol 95 (5) ◽  
pp. 580-589 ◽  
Author(s):  
N. Kalaiarasi ◽  
S. Manivarman

Vibrational and spectral characterizations of 2-(6-oxo-2-thioxo tetrahydro pyrimidin-4(1h)-ylidene) hydrazine carboxamide (OTHHPYHC) were experimentally presented for the ground state using FTIR and FT-Raman and theoretically presented by density functional theory (DFT) using B3LYP correlation function with the basis set 6-31G(d,p). The geometrical parameters, energies, and wavenumbers have been obtained. The fundamental assignments were performed on the basis of total energy distribution. The first order hyperpolarizability (β0) and relative properties (β, α0, and Δα) were calculated using B3LYP/6-31G(d, p) method. Solidity of the molecule due to hyperconjugative interactions and charge delocalization has been analysed using natural bond orbital (NBO) analysis. The charge distribution and electron transfer from bonding to antibonding orbitals and electron density in the σ* and π* antibonding orbitals confirms interaction within the molecule. In addition to this, Mulliken population and HOMO–LUMO analysis have been used to support the information of structural properties.


2019 ◽  
Vol 31 (6) ◽  
pp. 1332-1342 ◽  
Author(s):  
KATTAESWAR SRIKANTH ◽  
RAMAIAH KONAKANCHI ◽  
JYOTHI PRASHANTH

The experimental FT-IR spectral analysis of 9-chloroanthracene has worked out by using density functional theory (DFT). The optimized molecular structure and minimum energy of 9-chloroanthracene has analyzed using DFT/B3LYP functional employing 6-311++G(d,p) basis set. The vibrational frequencies along with IR intensities were computed, scaling was used for a better fit between the experimental and computed frequencies, they agreed with rms error 8.48 cm-1 for 9-chloroanthracene. The NLO behaviour of the molecule is investigated from first-order hyperpolarizability. The HOMO and LUMO energies are evaluated to demonstrate the chemical stability, reactivity of molecule. The MESP over the molecules were plotted to evaluate electron density regions and thermodynamic parameters are calculated. Hyper conjugative interactions and charge delocalization of the molecule study from NBO analysis and Fukui functions are evaluated for 9-chloroanthracene. The molecular docking studies were performed against anticancer protein targets Tyrosinase and HER2.


Author(s):  
R. Solaichamy ◽  
J. Karpagam

In the present study, we report on the Molecular structure and infrared (IR) and FT-Raman studies of Voglibose (VGB) as well as by calculations based on the density functional theory (DFT) approach; utilizing B3LYP/6-31G(d,p) basis set. The targeted interpretation of the vibrational spectra intended to the basis of calculated potential energy distribution matrix (PED) utilizing VEDA4 program. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital (NBO) analysis. The results show that change in electron density in the σ∗and π∗antibonding orbitals and E2energies confirm the occurrence of intramolecular charge transfer within the molecule. The UV-Visible and NMR spectral analysis were reported by using TD-DFT and gauge GIAO approach respectively and their chemical shifts related to TMS were compared. The lowering of HOMO and LUMO energy gap appears to be the cause for its enhanced charge transfer interactions. Besides, molecular electrostatic potential (MEP) analysis was reported. Due to different potent biological properties, the molecular docking results are also reported.


2016 ◽  
Vol 15 (01) ◽  
pp. 1650007 ◽  
Author(s):  
G. Venkatesh ◽  
M. Govindaraju ◽  
P. Vennila ◽  
C. Kamal

The FT-IR and FT-Raman analyses of 2-nitro acetophenone (2NAP) have been carried out by density functional theory (DFT) calculations based on B3LYP level with 6-31G*/6-311[Formula: see text]G** basis set. The gauge-independent atomic orbital (GIAO) method has been used to get 1H NMR and [Formula: see text]C NMR chemical shifts. From DFT calculations, various parameters such as atomic charges, HOMO–LUMO energies and Dipole moment have been obtained. The molecular electronic potential (MEP) has also been derived for 2NAP. In order to find the electronic excitation energies, oscillator strength and nature of the respective excited states, the closed-shell singlet calculation has been utilized. MOLVIB program has been employed to calculate total energy distribution (TED) and normal coordinate analysis. Natural bond orbital (NBO) analysis has also been carried out by DFT calculations with B3LYP/6-311[Formula: see text]G** basis set.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
N. Günay ◽  
H. Pir ◽  
D. Avcı ◽  
Y. Atalay

We report a theoretical study on molecular structure, vibrational spectra, nonlinear optical (NLO), and natural bond orbital (NBO) analysis of sarcosine-maleic acid (C7H11NO6) in the ground state calculated by using the Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6–31++G(d,p) basis set. We repeat NBO calculations with 6–31G(d,p) basis set so as to see the diffuse function impact on NBO analysis. Stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed using NBO analysis. NBO analysis shows that there is a O–H⋯O and N–H⋯O hydrogen bond in the title compound, which is consistent with the conclusion obtained by the analysis of molecular structure. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Also, these results are supported by the NLO parameters. Finally, the calculated results were applied to simulate infrared and Raman spectra of the title compound which showed good agreement with experimental ones.


Sign in / Sign up

Export Citation Format

Share Document