Density functional theory, Comparative vibrational spectroscopic studies, HOMO-LUMO, and NBO analysis of Trichloro isocyanuric acid and Trithio cyanuric acid

2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.

2017 ◽  
Vol 95 (5) ◽  
pp. 580-589 ◽  
Author(s):  
N. Kalaiarasi ◽  
S. Manivarman

Vibrational and spectral characterizations of 2-(6-oxo-2-thioxo tetrahydro pyrimidin-4(1h)-ylidene) hydrazine carboxamide (OTHHPYHC) were experimentally presented for the ground state using FTIR and FT-Raman and theoretically presented by density functional theory (DFT) using B3LYP correlation function with the basis set 6-31G(d,p). The geometrical parameters, energies, and wavenumbers have been obtained. The fundamental assignments were performed on the basis of total energy distribution. The first order hyperpolarizability (β0) and relative properties (β, α0, and Δα) were calculated using B3LYP/6-31G(d, p) method. Solidity of the molecule due to hyperconjugative interactions and charge delocalization has been analysed using natural bond orbital (NBO) analysis. The charge distribution and electron transfer from bonding to antibonding orbitals and electron density in the σ* and π* antibonding orbitals confirms interaction within the molecule. In addition to this, Mulliken population and HOMO–LUMO analysis have been used to support the information of structural properties.


Author(s):  
R. Solaichamy ◽  
J. Karpagam

In the present study, we report on the Molecular structure and infrared (IR) and FT-Raman studies of Voglibose (VGB) as well as by calculations based on the density functional theory (DFT) approach; utilizing B3LYP/6-31G(d,p) basis set. The targeted interpretation of the vibrational spectra intended to the basis of calculated potential energy distribution matrix (PED) utilizing VEDA4 program. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital (NBO) analysis. The results show that change in electron density in the σ∗and π∗antibonding orbitals and E2energies confirm the occurrence of intramolecular charge transfer within the molecule. The UV-Visible and NMR spectral analysis were reported by using TD-DFT and gauge GIAO approach respectively and their chemical shifts related to TMS were compared. The lowering of HOMO and LUMO energy gap appears to be the cause for its enhanced charge transfer interactions. Besides, molecular electrostatic potential (MEP) analysis was reported. Due to different potent biological properties, the molecular docking results are also reported.


2017 ◽  
Vol 15 (1) ◽  
pp. 225-237 ◽  
Author(s):  
Maha S. Almutairi ◽  
S. Muthu ◽  
Johanan C. Prasana ◽  
B. Chandralekha ◽  
Alwah R. Al-Ghamdi ◽  
...  

AbstractFourier transform infrared (FT-IR) and FT-Raman spectra of 1-acetyl-1H-indole-2,3-dione (N-acetylisatin) were recorded in the solid phase and analyzed. The molecular geometry, vibrational frequencies, infrared intensities, Raman activities and atomic charges were calculated using density functional theory (DFT/B3LYP) calculations with a standard 6-311++G(d,p) basis set. The fundamental vibrational modes of N-acetylisatin were analyzed and fully assigned with the aid of the recorded FT-IR and FT-Raman spectra. The simulated FT-IR and FT-Raman spectra showed good agreement with the experimental spectra. The stability of the molecule, arising from hyper-conjugative interactions and charge delocalization, was analyzed using natural bond orbital (NBO) analysis. The dipole moment (µ), polarization (α) and hyperpolarization (β) values of N-acetylisatin were also computed. The potential energy distribution (PED) was computed for the assignment of unambiguous vibrational fundamental modes. The HOMO and LUMO energy gap illustrated the chemical activity of N-acetylisatin. The energy and oscillator strength were calculated by DFT. Gauge–including atomic orbital NMR (1H and 13C) chemical shift calculations were performed and compared with the experimental values. Thermodynamic properties (heat capacity, entropy and enthalpy) of the compound at different temperatures were also calculated.


2016 ◽  
Vol 15 (01) ◽  
pp. 1650007 ◽  
Author(s):  
G. Venkatesh ◽  
M. Govindaraju ◽  
P. Vennila ◽  
C. Kamal

The FT-IR and FT-Raman analyses of 2-nitro acetophenone (2NAP) have been carried out by density functional theory (DFT) calculations based on B3LYP level with 6-31G*/6-311[Formula: see text]G** basis set. The gauge-independent atomic orbital (GIAO) method has been used to get 1H NMR and [Formula: see text]C NMR chemical shifts. From DFT calculations, various parameters such as atomic charges, HOMO–LUMO energies and Dipole moment have been obtained. The molecular electronic potential (MEP) has also been derived for 2NAP. In order to find the electronic excitation energies, oscillator strength and nature of the respective excited states, the closed-shell singlet calculation has been utilized. MOLVIB program has been employed to calculate total energy distribution (TED) and normal coordinate analysis. Natural bond orbital (NBO) analysis has also been carried out by DFT calculations with B3LYP/6-311[Formula: see text]G** basis set.


Sign in / Sign up

Export Citation Format

Share Document