charge delocalization
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 71)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Vol 12 (4) ◽  
pp. 401-411
Author(s):  
Sibel Celik ◽  
Senay Yurdakul

In this study, the spectroscopic characterization, frontier molecular orbital analysis, and natural bond orbital analysis (NBO) analysis were executed to determine the movement of electrons within the molecule and the stability, and charge delocalization of the 4H-1,2,4-triazol-4-amine (4-AHT) through density functional theory (DFT) approach and B3LYP/6-311++G(d,p) level of theory. Surface plots of the hybrids’ Molecular Electrostatic Potential (MEP) revealed probable electrophilic and nucleophilic attacking sites. The discussed ligand were observed to be characterized by various spectral studies (FT-IR, UV-Vis). The calculated IR was found to be correlated with experimental values. The UV-Vis data of the molecule was used to analyze the visible absorption maximum (λmax) using the time-dependent DFT method. Since the principle of drug-likeness is usually used in combinatorial chemistry to minimize depletion in pharmacological investigations and growth, drug-likeness and ADME properties were calculated in this research to establish 4-AHT molecule bioavailability. Furthermore, molecular docking studies were carried out. Molecular docking analysis was performed for the title ligand inside the active site of the Epidermal Growth Factor Receptor (EGFR). The title compound’s anti-tumor activity against the cancer cell, in which EGFR is strongly expressed, prompted us to conduct molecular docking into the ATP binding site of EGFR to predict whether this molecule has an analogous binding mode to the EGFR inhibitors (PDB: ID: 1M17).


2021 ◽  
Vol 12 (6) ◽  
pp. 8353-8366

L-Arginine Phosphate (LAP) is a possible material for applications involving nonlinear optical properties. Slow evaporation was used to generate single LAP crystals with a very high degree of transparency from an aqueous solution. The solubility of the pure and doped LAP crystals was measured at different temperatures in the double-distilled water. Natural bond orbital (NBO) research investigated the molecule's stability and charge delocalization. The HOMO-LUMO energies describe the charge transfer between molecules. The electrostatic potential of molecules has been investigated. The correlation found between crystalline perfection and SHG potency was mentioned.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao Sun ◽  
Ling Chen ◽  
Likun Xiong ◽  
Kun Feng ◽  
Yufeng Chen ◽  
...  

AbstractElectrochemical CO2 reduction (CO2RR) in a product-orientated and energy-efficient manner relies on rational catalyst design guided by mechanistic understandings. In this study, the effect of conducting support on the CO2RR behaviors of semi-conductive metal-organic framework (MOF) — Cu3(HITP)2 are carefully investigated. Compared to the stand-alone MOF, adding Ketjen Black greatly promotes C2H4 production with a stabilized Faradaic efficiency between 60-70% in a wide potential range and prolonged period. Multicrystalline Cu nano-crystallites in the reconstructed MOF are induced and stabilized by the conducting support via current shock and charge delocalization, which is analogous to the mechanism of dendrite prevention through conductive scaffolds in metal ion batteries. Density functional theory calculations elucidate that the contained multi-facets and rich grain boundaries promote C–C coupling while suppressing HER. This study underlines the key role of substrate-catalyst interaction, and the regulation of Cu crystalline states via conditioning the charge transport, in steering the CO2RR pathway.


2021 ◽  
Author(s):  
Wade Henke ◽  
Jonah Stiel ◽  
Victor Day ◽  
James Blakemore

Ligands based upon the 4,5-diazafluorene core are an important class of emerging ligands in organometallic chemistry, but the structure and electronic properties of these ligands have received less attention than they deserve. Here, we show that 9,9′-dimethyl-4,5-diazafluorene (Me2daf) can stabilize low-valent complexes through charge delocalization into its conjugated π-system. Using a new platform of [Cp*Rh] complexes with three accessible formal oxidation states (+III, +II, and +I), we show that the methylation in Me2daf is protective, blocking Brønsted acid-base chemistry commonly encountered with other daf-based ligands. Electronic absorption spectroscopy and single-crystal X-ray diffraction analysis of a family of eleven new compounds, including the unusual Cp*Rh(Me2daf), reveal features consistent with charge delocalization driven by π-backbonding into the LUMO of Me2daf, reminiscent of behavior displayed by the workhorse 2,2′-bipyridyl ligand. Taken together with spectrochemical data demonstrating clean conversion between oxidation states, our findings show that 9,9′-dialkylated daf-type ligands are promising building blocks for applications in reductive chemistry and catalysis.


2021 ◽  
pp. 118153
Author(s):  
Carlos Damián Rodríguez-Fernández ◽  
Luis M. Varela ◽  
Christian Schröder ◽  
Elena López Lago

Author(s):  
N. Daho ◽  
N. Benhalima ◽  
F. KHELFAOUI ◽  
O. SADOUKI ◽  
M. Elkeurti ◽  
...  

In this work, a comprehensive investigation of the salicylideneaniline derivatives is carried out using density functional theory to determine their linear and non-linear optical properties. Geometry optimizations, for gas and solvent phases, of the tautomers (enol and keto forms) are calculated using B3LYP levels with 6–31G (d,p) basis set . An intramolecular proton transfer, for 1SA-E and 2SA-E, is performed by a PES scan process at the B3LYP/6-31G (d,p) level. The optical properties are determined and show that they have extremely high nonlinear optical properties. In addition, the RDG analysis, MEP, and gap energy are calculated. The low energy gap value indicates the possibility of intramolecular charge transfer. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the first-order hyperpolarizability (β = 59.6471 × 10-30 esu), confirming that the salicylideneaniline derivatives can be used as attractive future NLO materials. Therefore, the reactive sites are predicted using MEP and the visible absorption maxima are analyzed using a theoretical UV–Vis spectrum. Natural bond orbitals are used to investigate the stability, charge delocalization, and intramolecular hydrogen bond.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4446
Author(s):  
Giancarlo V. Botteselle ◽  
Welman C. Elias ◽  
Luana Bettanin ◽  
Rômulo F. S. Canto ◽  
Drielly N. O. Salin ◽  
...  

Herein, we describe a simple and efficient route to access aniline-derived diselenides and evaluate their antioxidant/GPx-mimetic properties. The diselenides were obtained in good yields via ipso-substitution/reduction from the readily available 2-nitroaromatic halides (Cl, Br, I). These diselenides present GPx-mimetic properties, showing better antioxidant activity than the standard GPx-mimetic compounds, ebselen and diphenyl diselenide. DFT analysis demonstrated that the electronic properties of the substituents determine the charge delocalization and the partial charge on selenium, which correlate with the catalytic performances. The amino group concurs in the stabilization of the selenolate intermediate through a hydrogen bond with the selenium.


Sign in / Sign up

Export Citation Format

Share Document