ELECTRIC POWER DEFINITION IN THE WAVELET DOMAIN

Author(s):  
EDUARDO ANTONIO CANO PLATA ◽  
HERNÁN EMILIO TACCA

This paper discusses the definition of active and reactive power in wavelet domain. Different definitions for three-phase power may cause significant changes in the measurement equipment topology. The simple phase shift using the Akagi method between current and voltage for reactive power measurement is discussed. A new power quality analysis technique (pqAT) is proposed.

2014 ◽  
Vol 67 (3) ◽  
Author(s):  
Garba Aliyu ◽  
Saifulnizam Abd. Khalid ◽  
Jafaru Usman ◽  
Ahmad Fuad A. Aziz ◽  
Hussein Shareef

This paper present improved Walsh function (IWF) algorithm as an alternative approach for active and reactive power measurement in linear and nonlinear, balanced and unbalanced sinusoidal three phase load system. It takes advantage of Walsh function unified approach and its intrinsic high level accuracy as a result of coefficient characteristics and energy behaviour representation. The developed algorithm was modeled on the Matlab Simulink software; different types of load, linear and nonlinear were also modeled based on practical voltage and current waveforms and tested with the proposed improved Walsh algorithm. The IEEE standard 1459-2000 which is based on fast Fourier transform FFT approach was used as benchmark for the linear load system while a laboratory experiment using Fluke 435 power quality analyzer PQA which complies with IEC/EN61010-1-2001standards was used to validate the improved algorithm for nonlinear load measurement. The results showed that the algorithm has the potential to effectively measure three phase power components under different load conditions.


1978 ◽  
Vol 27 (4) ◽  
pp. 452-455 ◽  
Author(s):  
Petar N. Miljanic ◽  
Borislav Stojanovic ◽  
Vladimir Petrovic

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2107 ◽  
Author(s):  
Min-Rong Chen ◽  
Huan Wang ◽  
Guo-Qiang Zeng ◽  
Yu-Xing Dai ◽  
Da-Qiang Bi

The optimal P-Q control issue of the active and reactive power for a microgrid in the grid-connected mode has attracted increasing interests recently. In this paper, an optimal active and reactive power control is developed for a three-phase grid-connected inverter in a microgrid by using an adaptive population-based extremal optimization algorithm (APEO). Firstly, the optimal P-Q control issue of grid-connected inverters in a microgrid is formulated as a constrained optimization problem, where six parameters of three decoupled PI controllers are real-coded as the decision variables, and the integral time absolute error (ITAE) between the output and referenced active power and the ITAE between the output and referenced reactive power are weighted as the objective function. Then, an effective and efficient APEO algorithm with an adaptive mutation operation is proposed for solving this constrained optimization problem. The simulation and experiments for a 3kW three-phase grid-connected inverter under both nominal and variable reference active power values have shown that the proposed APEO-based P-Q control method outperforms the traditional Z-N empirical method, the adaptive genetic algorithm-based, and particle swarm optimization-based P-Q control methods.


Author(s):  
Laura Collazo Solar ◽  
Angel A. Costa Montiel ◽  
Miriam Vilaragut Llanes ◽  
Vladimir Sousa Santos

In this paper, a new steady-state model of a three-phase asynchronous motor is proposed to be used in the studies of electrical power systems. The model allows for obtaining the response of the demand for active and reactive power as a function of voltage and frequency. The contribution of the model is the integration of the characteristics of the mechanical load that can drive motors, either constant or variable load. The model was evaluated on a 2500 kW and 6000 V motor, for the two types of mechanical load, in a wide range of voltage and frequency, as well as four load factors. As a result of the evaluation, it was possible to verify that, for the nominal frequency and voltage variation, the type of load does not influence the behavior of the powers and that the reactive power is very sensitive to the voltage variation. In the nominal voltage and frequency deviation scenario, it was found that the type of load influences the behavior of the active and reactive power, especially in the variable load. The results demonstrate the importance of considering the model proposed in the simulation software of electrical power systems.


Sign in / Sign up

Export Citation Format

Share Document