DE-NOISING AND BASELINE WANDERING REMOVAL OF ELECTROCARDIOGRAM USING DOUBLE DENSITY DISCRETE WAVELET

Author(s):  
R. SHANTHA SELVA KUMARI ◽  
V. SADASIVAM

In this paper, an off-line double density discrete wavelet transform based de-noising and baseline wandering removal methods are proposed. Different levels decomposition is used depending upon the noise level, so as to give a better result. When the noise level is low, three levels decomposition is used. When the noise level is medium, four levels decomposition is used. When the noise level is high, five levels decomposition is used. Soft threshold technique is applied to each set of wavelet detail coefficients with different noise level. Donoho's estimator is used as a threshold for each set of wavelet detail coefficients. The results are compared with other classical filters and improvement of signal to noise ratio is discussed. Using the proposed method the output signal to noise ratio is 19.7628 dB for an input signal to noise ratio of -7.11 dB. This is much higher than other methods available in the literature. Baseline wandering removal is done by using double density discrete wavelet approximation coefficients of the whole signal. This is an unsupervised method allowing the process to be used in off-line automatic analysis of electrocardiogram. The results are more accurate than other methods with less effort.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5540
Author(s):  
Nayeem Hasan ◽  
Md Saiful Islam ◽  
Wenyu Chen ◽  
Muhammad Ashad Kabir ◽  
Saad Al-Ahmadi

This paper proposes an encryption-based image watermarking scheme using a combination of second-level discrete wavelet transform (2DWT) and discrete cosine transform (DCT) with an auto extraction feature. The 2DWT has been selected based on the analysis of the trade-off between imperceptibility of the watermark and embedding capacity at various levels of decomposition. DCT operation is applied to the selected area to gather the image coefficients into a single vector using a zig-zig operation. We have utilized the same random bit sequence as the watermark and seed for the embedding zone coefficient. The quality of the reconstructed image was measured according to bit correction rate, peak signal-to-noise ratio (PSNR), and similarity index. Experimental results demonstrated that the proposed scheme is highly robust under different types of image-processing attacks. Several image attacks, e.g., JPEG compression, filtering, noise addition, cropping, sharpening, and bit-plane removal, were examined on watermarked images, and the results of our proposed method outstripped existing methods, especially in terms of the bit correction ratio (100%), which is a measure of bit restoration. The results were also highly satisfactory in terms of the quality of the reconstructed image, which demonstrated high imperceptibility in terms of peak signal-to-noise ratio (PSNR ≥ 40 dB) and structural similarity (SSIM ≥ 0.9) under different image attacks.


This paper aims in presenting a thorough comparison of performance and usefulness of multi-resolution based de-noising technique. Multi-resolution based image denoising techniques overcome the limitation of Fourier, spatial, as well as, purely frequency based techniques, as it provides the information of 2-Dimensional (2-D) signal at different levels and scales, which is desirable for image de-noising. The multiresolution based de-noising techniques, namely, Contourlet Transform (CT), Non Sub-sampled Contourlet Transform (NSCT), Stationary Wavelet Transform (SWT) and Discrete Wavelet Transform (DWT), have been selected for the de-noising of camera images. Further, the performance of different denosing techniques have been compared in terms of different noise variances, thresholding techniques and by using well defined metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE). Analysis of result shows that shift-invariant NSCT technique outperforms the CT, SWT and DWT based de-noising techniques in terms of qualititaive and quantitative objective evaluation


The research constitutes a distinctive technique of steganography of image. The procedure used for the study is Fractional Random Wavelet Transform (FRWT). The contrast between wavelet transform and the aforementioned FRWT is that it comprises of all the benefits and features of the wavelet transform but with additional highlights like randomness and partial fractional value put up into it. As a consequence of the fractional value and the randomness, the algorithm will give power and a rise in the surveillance layers for steganography. The stegano image will be acquired after administrating the algorithm which contains not only the coated image but also the concealed image. Despite the overlapping of two images, any diminution in the grade of the image is not perceived. Through this steganographic process, we endeavor for expansion in surveillance and magnitude as well. After running the algorithm, various variables like Mean Square Error (MSE) and Peak Signal to Noise ratio (PSNR) are deliberated. Through the intended algorithm, a rise in the power and imperceptibility is perceived and it can also support diverse modification such as scaling, translation and rotation with algorithms which previously prevailed. The irrefutable outcome demonstrated that the algorithm which is being suggested is indeed efficacious.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Shanshan Chen ◽  
Bensheng Qiu ◽  
Feng Zhao ◽  
Chao Li ◽  
Hongwei Du

Compressed sensing (CS) has been applied to accelerate magnetic resonance imaging (MRI) for many years. Due to the lack of translation invariance of the wavelet basis, undersampled MRI reconstruction based on discrete wavelet transform may result in serious artifacts. In this paper, we propose a CS-based reconstruction scheme, which combines complex double-density dual-tree discrete wavelet transform (CDDDT-DWT) with fast iterative shrinkage/soft thresholding algorithm (FISTA) to efficiently reduce such visual artifacts. The CDDDT-DWT has the characteristics of shift invariance, high degree, and a good directional selectivity. In addition, FISTA has an excellent convergence rate, and the design of FISTA is simple. Compared with conventional CS-based reconstruction methods, the experimental results demonstrate that this novel approach achieves higher peak signal-to-noise ratio (PSNR), larger signal-to-noise ratio (SNR), better structural similarity index (SSIM), and lower relative error.


Author(s):  
Ayodeji Olalekan Salau ◽  
Shruti Jain ◽  
Joy Nnenna Eneh

Utilizing multiple views of an image is an important approach in digital photography, video editing, and medical image fusion applications. Image fusion (ImF) methods are used to improve an image's quality and remove noise from the image signal, resulting in a higher signal-to-noise ratio. A complete assessment of the literature on the different transform kinds, techniques, and rules utilized in ImF is presented in this paper. To assess the outcomes, a white flower image was fused using discrete wavelet transform (DWT) and discrete cosine transform (DCT) techniques. For validation of results, the red, green, blue (RGB) and intensity hue saturation (IHS) values of individual and fused images were evaluated. The results obtained from the fused images with the spatial IHS transform method give a remarkable performance. Furthermore, the results of the performance evaluation using DWT and DCT fusion techniques show that the same peak signal to noise ratio (PSNR) of 114.04 was achieved for both PSNR 1 and PSNR 2 for DCT, and different results were obtained for DWT. For signal to noise ratio (SNR), SNR 1 and SNR 2 achieved slightly similar values of 114.00 and 114.01 for DCT, while a SNR of 113.28 and 112.26 was achieved for SNR 1 and SNR 2 respectively.


1986 ◽  
Vol 29 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Reinier Plomp

This paper reviews the results of a series of investigations inspired by a model of the speech-reception threshold (SRT) of hearing-impaired listeners. The model contains two parameters accounting for the SRT of normal-hearing listeners (SRT in quiet and signal-to-noise ratio corresponding to the threshold at high noise levels), two parameters describing the hearing loss (attenuation and threshold elevation in terms of signal-to-noise ratio), and three parameters describing the hearing aid (acoustic gain, threshold elevation expressed in signal-to-noise ratio, and equivalent internal noise level). Experimental data are reported for three different types of hearing impairment: presbycusis, hearing losses with a pathological origin, and noise-induced losses. The model gives an excellent description of the data. It demonstrates that for many hearing-impaired persons speech intelligibility at noise levels beyond 50 to 60 dB(A) is their main problem, whereas hearing aids are most effective below that noise level.


Several Noises may be present in acquired images. This is an undesired feature for image processing techniques that analyze these images. Image de-noising helps improve efficiency of image processing. Many image de-noising methods have been proposed and exist in literature. Image de-noising methods for agricultural images have been proposed to a lesser extent when compared to the bright medical or photographic images. This paper proposes Agricultural Image De-noising (AID) which uses a discrete wavelet transform (DWT) to eliminate noise in agricultural images. This study uses specific kind of wavelet family spline wavelet transforms with appropriate decomposition level and the wavelet coefficients are analysed with hard and soft threshold methods. The denoised image using various spline wavelets is compared of hard threshold and soft threshold are assessed. The performance of AID is calculated using the peak signal to noise ratio (PSNR) and signal to noise ratio (SNR).


Author(s):  
Zahraa Yaseen Hasan ◽  
Rusul Altaie ◽  
Hawraa Abd Al-kadum Hassan

<span id="docs-internal-guid-a16efc88-7fff-5adf-531b-900845049730"><span>More recent digital camera introduced enormous facilities for users from different specifications to take images easily, but the user still wants to improve these images, which it contains different problems like ambiguous and colors is not clear, because not enough light, cloudy weather, bright light, dark region and it's taken from remote distances. This paper aims to use a new approach for fusion images by using a wavelet coefficient based on PSNR and SNR measure (the technical result) instead of using the max, min, average values, and so on in the previous methods. The wavelet coefficient of each sub band is compared between them, the sub band had a value higher of measure is selected for fusion. Firstly, a discrete wavelet transform has been applied to the medical images with 2level. Then, the peak signal to noise ratio and signal to noise ratio measures have been computed for each sub-band. After that PSNR and SNR values have been compared for each sub-band to opposite sub-band and it selected the better value of measures. Secondly, PSNR and SNR values have been gathered for each image. Then select the image that contains value higher PSNR and lower value of SNR for purpose fusion. Finally, perform an inverse discrete wavelet on the fused image to transform it from the frequency to the spatial domain. The results of the work showed that the wavelet coefficient is used to preserve the image details and removed the noise. PSNR value of 1level of dwt is higher than 2level. This paper makes the image more clearer and informative than the original images. </span></span>


2002 ◽  
Vol 25 (10) ◽  
pp. 1474-1487 ◽  
Author(s):  
JIE LIAN ◽  
SRIRAM SRINIVASAN ◽  
HO-CHIE TSAI ◽  
DONGSHENG WU ◽  
BOAZ AVITALL ◽  
...  

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. A35-A38 ◽  
Author(s):  
Guus Berkhout ◽  
Gerrit Blacquière

If simultaneous shooting is carried out by incoherent source arrays, being the condition of blended acquisition, the deblending process generates shot records with a very low residual interference (blending noise). We found, theoretically and numerically, that deblended shot records had a better background-related signal-to-noise ratio than shot records in unblended surveys. This improvement increased with increasing blending fold and decreasing survey time. An interesting consequence of this property is that blended surveys can be carried out under more severe noise conditions than unblended surveys. It is advisable to optimize the survey time in areas with a large background noise level or in areas with severe environmental restrictions.


Sign in / Sign up

Export Citation Format

Share Document