QUANTITATIVE IDENTIFICATION OF ROTOR CRACKS BASED ON FINITE ELEMENT OF B-SPLINE WAVELET ON THE INTERVAL

Author(s):  
XUEFENG CHEN ◽  
BING LI ◽  
JIAWEI XIANG ◽  
ZHENGJIA HE

Based on finite element of B-spline wavelet on the interval (BSWI), the quantitative identification method of transverse crack for rotor systems was studied. The new model of BSWI Rayleigh–Euler rotary beam element considering gyroscopic effect and rotational inertia was constructed to solve the first three natural frequencies of the cracked rotor with high precision, and the first three frequencies solution surfaces of normalized crack location and size were obtained by using surface-fitting technique. Then the first three metrical natural frequencies were employed as inputs of the solution curve surfaces. The intersection of the three frequencies contour lines predicted the normalized crack location and size. The numerical and experimental examples were given to verify the validity of the beam element for crack quantitative identification in rotor systems. The new method can be applied to prognosis and quantitative diagnosis of cracks in the rotor system.

Author(s):  
Antonio Carminelli ◽  
Giuseppe Catania

This paper presents a refinement technique for a B2-spline degenerate isoparametric shell finite element model for the analysis of the vibrational behavior of thin and moderately thick-walled structures. Complex structures to be refined are modeled by means of FE B-spline patches assembled with C0 continuity as usual in FE technique. The model refinement was performed by adding, on the domain of the selected patch, a tensorial set of polynomial B-spline functions, defined on local clamped knot vectors, and normalizing all the functions so that the resulting displacement field remain polynomial and continuous overall the domain except on the boundaries of the refined subdomain. A degrees of freedom trasformation, based on the knot-insertion algorthim, is adopted in order to guarantee the C0 continuity of the displacement field on the boundaries of the refined subdomain. Two numerical examples are presented in order to test the proposed approach. The natural frequencies of two structures, computed by means of the proposed modelling technique, are compared with reference results available in the literature or computed by means of reference standard FE models. Strengths and limits of the approach are finally discussed.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950017 ◽  
Author(s):  
Yanfei He ◽  
Xingwu Zhang ◽  
Jia Geng ◽  
Xuefeng Chen ◽  
Zengguang Li

Curved beam structure has been widely used in engineering, due to its good load-bearing and geometric characteristics. More common methods for analyzing and designing this structure are the finite element methods (FEMs), but these methods have many disadvantages. Fortunately, the multivariable wavelet FEMs can solve these drawbacks. However, the multivariable generalized potential energy functional of curved beam, used to construct this element, has not been given in previous literature. In this paper, the generalized potential energy functional for curved beam with two kinds of variables is derived initially. On this basis, the B-spline wavelet on the interval (BSWI) is used as the interpolation function to construct the wavelet curved beam element with two kinds of variables. In the end, several typical numerical examples of thin to thick curved beams are given, which show that the present element is more effective in static and free vibration analysis of curved beam structures.


1997 ◽  
Vol 119 (2) ◽  
pp. 145-151 ◽  
Author(s):  
M. Krawczuk ◽  
W. Ostachowicz

The paper presents a finite element model of the arch with a transverse, one-edge crack. A part of the cracked arch is modelled by a curved beam finite element with the crack. Parts of the arch without the crack are modelled by noncracked curved beam finite elements. The crack occurring in the arch is nonpropagating and open. It is assumed that the crack changes only the stiffness of the arch, whereas the mass is unchanged. The method of the formation of the stiffness matrix of a curved beam finite element with the crack is presented. The effects of the crack location and its length on the changes of the in-plane natural frequencies and mode shapes of the clamped-clamped arch are studied.


2012 ◽  
Vol 260-261 ◽  
pp. 368-371
Author(s):  
Lu Wang ◽  
Shun Qiang Ye ◽  
Rui Meng

In response to the vibration fatigue fracture of the steam turbine blade,we construct the 3D model of cracked blade based on the actual crack location,then modal analysis is conducted to the blade with crack and one without crack using the finite element software ANSYS.Thus,we can get the respective natural frequencies and the figure of main vibration modes.The comprasion results show that the existence of the crack can make the natural frequencies of blades drop and the blades have the greatest sway and twisting deformation along the Y axis.These characteristics above can effectively identify the presence of blade cracked. It has crucial meaning for achieving cracked blade online monitoring.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Zhibo Yang ◽  
Xuefeng Chen ◽  
Yumin He ◽  
Zhengjia He ◽  
Jie Zhang

A B-spline wavelet on interval (BSWI) finite element is developed for curved beams, and the static and free vibration behaviors of curved beam (arch) are investigated in this paper. Instead of the traditional polynomial interpolation, scaling functions at a certain scale have been adopted to form the shape functions and construct wavelet-based elements. Different from the process of the direct wavelet addition in the other wavelet numerical methods, the element displacement field represented by the coefficients of wavelets expansions is transformed from wavelet space to physical space by aid of the corresponding transformation matrix. Furthermore, compared with the commonly used Daubechies wavelet, BSWI has explicit expressions and excellent approximation properties, which guarantee satisfactory results. Numerical examples are performed to demonstrate the accuracy and efficiency with respect to previously published formulations for curved beams.


Author(s):  
Z. N. Haji ◽  
S. O. Oyadiji

In this study, a crack identification approach based on a finite element cracked model is presented to identify the location and depth ratios of a crack in rotor systems. A Bernoulli-Euler rotor carrying an auxiliary roving disc has been used to model the cracked rotor, in which the effect of a transverse open crack is modelled as a time-varying stiffness matrix. In order to predict the crack location in the rotor-disc-bearing system, the suggested approach utilises the variation of the normalized natural frequency curves versus the non-dimensional location of a roving disc which traverses along the rotor span. The merit of the suggested approach is to identify the location and sizes of a crack in a rotor by determining only the natural frequencies of the stationary rotor system. The first four natural frequencies are employed for the identification and localisation of a crack in the stationary rotor. Furthermore, this approach is not only efficient and practicable for high crack depth ratios but also for small crack depth ratios and for a crack close to or at the node of mode shapes, where natural frequencies are unaffected.


Sign in / Sign up

Export Citation Format

Share Document