twisting deformation
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Yang Cao ◽  
Jingyan Dong

Abstract Soft electrothermal actuators have drawn extensive attention in recent years for their promising applications in biomimetic and biomedical areas. Most soft electrothermal actuators reported so far demonstrated uniform bending deformation, due to the deposition based fabrication of the conductive heater layer from nanomaterial-based solutions, which generally provides uniform heating capacity and uniform bending deformation. In this paper, a soft electrothermal actuator that can provide twisting deformation was designed and fabricated. A metallic microfilament heater of the soft twisting actuator was directly printed using electrohydrodynamic (EHD) printing, and embedded between two structural layers, a polyimide (PI) film and a polydimethylsiloxane (PDMS) layer, with distinct thermal expansion properties. Assisted by the direct patterning capabilities of EHD printing, a skewed heater pattern was designed and printed. This skewed heater pattern not only produces a skewed parallelogram-shaped temperature field, but also changes the stiffness anisotropy of the actuator, leading to twisting deformation with coupled bending. A theoretical kinematic model was built for the twisting actuator to describe its twisting deformation under different actuation effects. Based on that model, influence of design parameters on the twisting angle and motion trajectory of the twisting actuator were studied and validated by experiments. Finite element analysis (FEA) was utilized for the thermal and deformation analysis of the actuator. The fabricated twisting actuator was characterized on its heating and twisting performance at different supply voltages. Using three twisting actuators, a soft gripper was designed and fabricated to implement pick-and-place operations of delicate objects.


Author(s):  
K. Korner ◽  
B. Audoly ◽  
K. Bhattacharya

The discrete elastic rod method (Bergou et al. 2008 ACM Trans. Graph . 27 , 63:1–63:12. ( doi:10.1145/1360612.1360662 )) is a numerical method for simulating slender elastic bodies. It works by representing the centreline as a polygonal chain, attaching two perpendicular directors to each segment and defining discrete stretching, bending and twisting deformation measures and a discrete strain energy. Here, we investigate an alternative formulation of this model based on a simpler definition of the discrete deformation measures. Both formulations are equally consistent with the continuous rod model. Simple formulae for the first and second gradients of the discrete deformation measures are derived, making it easy to calculate the Hessian of the discrete strain energy. A few numerical illustrations are given. The approach is also extended to inextensible ribbons described by the Wunderlich model, and both the developability constraint and the dependence of the energy on the strain gradients are handled naturally.


Author(s):  
Ebenezer V Badoe

Dystonias are rare in childhood and consist of variably sustained twisting deformation of a limb or parts of a trunk. Dystonias can be considered primary because of a genetic disorder or secondary due to a central nervous system injury like cerebral palsy or medications. The rare dopa-responsive dystonia is often mistaken for cerebral palsy, stroke, localized limb trauma or conversion disorder. The aim of this report is to increase the awareness of a rare but eminently treatable type of dystonia known as dopa–responsive dystonia or Segawa disease. In this report a young girl with dystonia who was severely disabled and could not attend school was misdiagnosed as cerebral palsy for two years. After treatment with low dose L-dopa within 48 hours, a dramatic and sustained response with restoration of foot dystonia and mobility was observed. Recognition of L-dopa dystonia facilitates proper treatment and significant improvement in quality of life


2020 ◽  
pp. 108128652096320
Author(s):  
Alan S Wineman

This work considers a rubber cylinder under zero axial force that elongates in response to the normal stresses produced during torsion (the Poynting effect). The combined elongation and twisting deformation occurs at an elevated temperature at which the rubber undergoes time-dependent scission and re-crosslinking of its macromolecular network junctions. A constitutive theory accounting for this microstructural change is used in an analytical and numerical study of the interaction of the deformation and the scission or re-crosslinking process. Examples show the time-dependence of elongation for several twist histories.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1350 ◽  
Author(s):  
Jan Plagge ◽  
Manfred Klüppel

A micromechanical concept of filler-induced stress-softening and hysteresis is established that describes the complex quasi-static deformation behavior of filler reinforced rubbers upon repeated stretching with increasing amplitude. It is based on a non-affine tube model of rubber elasticity and a distinct deformation and fracture mechanics of filler clusters in the stress field of the rubber matrix. For the description of the clusters we refer to a three-dimensional generalization of the Kantor–Webman model of flexible chain aggregates with distinct bending–twisting and tension deformation of bonds. The bending–twisting deformation dominates the elasticity of filler clusters in elastomers while the tension deformation is assumed to be mainly responsible for fracture. The cluster mechanics is described in detail in the theoretical section, whereby two different fracture criteria of filler–filler bonds are considered, denoted “monodisperse” and “hierarchical” bond fracture mechanism. Both concepts are compared in the experimental section, where stress–strain cycles of a series of ethylene–propylene–diene rubber (EPDM) composites with various thermo-oxidative aging histories are evaluated. It is found that the “hierarchical” bond fracture mechanism delivers better fits and more stable fitting parameters, though the evolution of fitting parameters with aging time is similar for both models. From the adaptations it is concluded that the crosslinking density remains almost constant, indicating that the sulfur bridges in EPDM networks are mono-sulfidic, and hence, quite stable—even at 130 °C aging temperature. The hardening of the composites with increasing aging time is mainly attributed to the relaxation of filler–filler bonds, which results in an increased stiffness and strength of the bonds. Finally, a frame-independent simplified version of the stress-softening model is proposed that allows for an easy implementation into numerical codes for fast FEM simulations


2017 ◽  
Vol 84 (10) ◽  
Author(s):  
Johnathan Goodsell ◽  
Bo Peng ◽  
R. Byron Pipes ◽  
Wenbin Yu

The interlaminar stress in angle-ply and cross-ply composite laminates subjected to twisting deformation are investigated. Two mechanisms of interlaminar load transfer have been developed by studying the angle-ply laminate and the cross-ply laminate subjected to uniform axial extension, thermoelastic deformation and anticlastic bending deformation. In the present, these mechanisms are investigated in laminates subjected to twisting deformation. It is shown that the mechanisms of interlaminar load transfer in twisting deformation are identical to those previously investigated, though they arise from different causes. Furthermore, a unified treatment of the mechanisms of interlaminar load transfer is presented for the angle-ply laminate and the cross-ply laminate subjected to the four aforementioned modes of deformation.


Author(s):  
Fatemeh Afzali ◽  
Onur Kapucu ◽  
Brian F. Feeny

In this work the derivation of a vibration model for an H-rotor/Giromill blade is investigated. The blade is treated as a uniform straight elastic Euler-Bernoulli beam under transverse bending and twisting deformation. The derivation of the energy equations for the bending and twisting blade and a simplified aerodynamic model is issued. Lagrange’s equations are applied to assumed modal coordinates to obtain nonlinear equations of motion for bend and twist. A single quasi-steady airfoil theory is applied to obtain the aeroelastic loads. The behavior of the linearized equation for bend only is examined.


Sign in / Sign up

Export Citation Format

Share Document