CONSTRUCTION OF THE MULTI-WAVELETS ON SOME SMOOTH PLANE CURVES VIA LENGTH-PRESERVING PROJECTION

Author(s):  
BAOQIN WANG ◽  
GANG WANG ◽  
XIAOHUI ZHOU

Based on the theory of the discrete multi-wavelets in the space L2(R), the theory of the discrete multi-wavelets in the space L2(C) is presented properly in this paper, where C denotes a smooth plane curve. Firstly, the length-preserving projection is constructed, and by the length-preserving projection, the multiplicity multi-resolution analysis in the space L2(C) is defined properly and we define the dilation operator and translation operator in the space L2(C). Then, the two-scale refinement equations of multi-scaling function and multi-wavelet in the space L2(C) is deduced by using length-preserving mapping, the orthogonality is discussed, and the decomposition and reconstruction algorithm is computed. Finally, the example is given.

Author(s):  
Bao Qin Wang ◽  
Gang Wang ◽  
Xiao Hui Zhou ◽  
Yu Su

In this paper, a simple method is given in order to construct an area preserving mapping from a developable surface M to a plane. Based on the area preserving projection, we give some important formulas on M, and define a multi-resolution analysis on L2(M). We provide the conditions to further discuss the continuous wavelet transform and discrete wavelet transform on developable surface. At the same time, we derived two-scale equations that the scaling function and wavelet function on developable surface satisfied, we also define and discuss the orthogonality, and several important theorems are given. Finally, we construct the numerical examples. The focus of this paper is the area preserving mapping that from developable surface M to a plane, and the discrete wavelet transform on developable surface.


2020 ◽  
pp. 1-15
Author(s):  
Reid Monroe Harris

We consider the parameter space [Formula: see text] of smooth plane curves of degree [Formula: see text]. The universal smooth plane curve of degree [Formula: see text] is a fiber bundle [Formula: see text] with fiber diffeomorphic to a surface [Formula: see text]. This bundle gives rise to a monodromy homomorphism [Formula: see text], where [Formula: see text] is the mapping class group of [Formula: see text]. The main result of this paper is that the kernel of [Formula: see text] is isomorphic to [Formula: see text], where [Formula: see text] is a free group of countably infinite rank. In the process of proving this theorem, we show that the complement [Formula: see text] of the hyperelliptic locus [Formula: see text] in Teichmüller space [Formula: see text] has the homotopy type of an infinite wedge of spheres. As a corollary, we obtain that the moduli space of plane quartic curves is aspherical. The proofs use results from the Weil–Petersson geometry of Teichmüller space together with results from algebraic geometry.


2019 ◽  
Vol 62 (02) ◽  
pp. 223-230 ◽  
Author(s):  
Shamil Asgarli

AbstractWe prove that if $C$ is a reflexive smooth plane curve of degree $d$ defined over a finite field $\mathbb{F}_{q}$ with $d\leqslant q+1$ , then there is an $\mathbb{F}_{q}$ -line $L$ that intersects $C$ transversely. We also prove the same result for non-reflexive curves of degree $p+1$ and $2p+1$ when $q=p^{r}$ .


Author(s):  
Eslam Badr ◽  
Francesc Bars

Let [Formula: see text] be a smooth plane curve of degree [Formula: see text] defined over a global field [Formula: see text] of characteristic [Formula: see text] or [Formula: see text] (up to an extra condition on [Formula: see text]). Unless the curve is bielliptic of degree four, we observe that it always admits finitely many quadratic points. We further show that there are only finitely many quadratic extensions [Formula: see text] when [Formula: see text] is a number field, in which we may have more points of [Formula: see text] than these over [Formula: see text]. In particular, we have this asymptotic phenomenon valid for Fermat’s and Klein’s equations. Second, we conjecture that there are two infinite sets [Formula: see text] and [Formula: see text] of isomorphism classes of smooth projective plane quartic curves over [Formula: see text] with a prescribed automorphism group, such that all members of [Formula: see text] (respectively [Formula: see text]) are bielliptic and have finitely (respectively infinitely) many quadratic points over a number field [Formula: see text]. We verify the conjecture over [Formula: see text] for [Formula: see text] and [Formula: see text]. The analog of the conjecture over global fields with [Formula: see text] is also considered.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


2021 ◽  
Vol 65 (4) ◽  
pp. 953-998
Author(s):  
Mark A. Iwen ◽  
Felix Krahmer ◽  
Sara Krause-Solberg ◽  
Johannes Maly

AbstractThis paper studies the problem of recovering a signal from one-bit compressed sensing measurements under a manifold model; that is, assuming that the signal lies on or near a manifold of low intrinsic dimension. We provide a convex recovery method based on the Geometric Multi-Resolution Analysis and prove recovery guarantees with a near-optimal scaling in the intrinsic manifold dimension. Our method is the first tractable algorithm with such guarantees for this setting. The results are complemented by numerical experiments confirming the validity of our approach.


2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


2018 ◽  
Vol 61 (3) ◽  
pp. 650-658 ◽  
Author(s):  
Taketo Shirane

AbstractThe splitting number of a plane irreducible curve for a Galois cover is effective in distinguishing the embedded topology of plane curves. In this paper, we define the connected number of a plane curve (possibly reducible) for a Galois cover, which is similar to the splitting number. By using the connected number, we distinguish the embedded topology of Artal arrangements of degree b ≥ 4, where an Artal arrangement of degree b is a plane curve consisting of one smooth curve of degree b and three of its total inflectional tangents.


Sign in / Sign up

Export Citation Format

Share Document