The comprehensive analysis of the determination of wavelet function-level pair for the decomposition and reconstruction of artificial S1 heart signals by using multi-resolution analysis

2021 ◽  
Vol 70 ◽  
pp. 103055
Author(s):  
Adem Polat
2019 ◽  
Vol 29 (10) ◽  
pp. 2050156
Author(s):  
Rinku Rabidas ◽  
Abhishek Midya ◽  
Jayasree Chakraborty ◽  
Wasim Arif

In this paper, multi-resolution analysis of two edge-texture based descriptors, Discriminative Robust Local Binary Pattern (DRlbp) and Discriminative Robust Local Ternary Pattern (DRltp), are proposed for the determination of mammographic masses as benign or malignant. As an extension of Local Binary Pattern (LBP) and Local Ternary Pattern (LTP), DRlbp and LTP-based features overcome the drawbacks of these features preserving the edge information along with texture. With the hypothesis that multi-resolution analysis of these features for different regions related to mammaographic masses with wavelet transform will capture more discriminating patterns and thus can help in characterizing masses. In order to evaluate the efficiency of the proposed approach, several experiments are carried out using the mini-MIAS database where a 5-fold cross validation technique is incorporated with Support Vector Machine (SVM) on the optimal set of features obtained via stepwise logistic regression method. An area under the receiver operating characteristic (ROC) curve ([Formula: see text] value) of 0.96 is achieved with DRlbp attributes as the best performance. The superiority of the proposed scheme is established by comparing the obtained results with recently developed other competing schemes.


2021 ◽  
Vol 65 (4) ◽  
pp. 953-998
Author(s):  
Mark A. Iwen ◽  
Felix Krahmer ◽  
Sara Krause-Solberg ◽  
Johannes Maly

AbstractThis paper studies the problem of recovering a signal from one-bit compressed sensing measurements under a manifold model; that is, assuming that the signal lies on or near a manifold of low intrinsic dimension. We provide a convex recovery method based on the Geometric Multi-Resolution Analysis and prove recovery guarantees with a near-optimal scaling in the intrinsic manifold dimension. Our method is the first tractable algorithm with such guarantees for this setting. The results are complemented by numerical experiments confirming the validity of our approach.


2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


Sign in / Sign up

Export Citation Format

Share Document