scholarly journals QUANTUM ZERO-ERROR CAPACITY

2005 ◽  
Vol 03 (01) ◽  
pp. 135-139 ◽  
Author(s):  
REX A. C. MEDEIROS ◽  
FRANCISCO M. DE ASSIS

We define a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.

2022 ◽  
Author(s):  
Jino Heo ◽  
Seong Gon Choi

Abstract We propose photonic schemes for the distribution and reconstruction of a two-qubit entangled state using a hybrid entangled state under a noisy quantum channel. First, to generate a hybrid entangled state correlated with polarizations and time-bins, we employ a quantum dot (QD)-cavity system (nonlinear optical gate) and linear optical devices to implement controlled operation. These schemes can achieve the distribution and reconstruction of a two-qubit entangled state from hybrid entanglement by utilizing only linear optical devices without a QD-cavity system (i.e., a nonlinear optical device) for users who want to share an entangled state under a noisy quantum channel. For a feasible realization of the proposed schemes, we analyze the interaction between the photons and QD-cavity system and demonstrate the experimental conditions under which the reliable performance of the QD-cavity system is achieved.


2014 ◽  
Vol 14 (7&8) ◽  
pp. 589-607
Author(s):  
Xiu-Bo Chen ◽  
Gang Xu ◽  
Yuan Su ◽  
Yi-Xian Yang

In this paper, the perfect secret sharing in quantum cryptography is investigated. On one hand, the security of a recent protocol [Adhikari et al. Quantum Inform. \& Comput. 12 (2012) 0253-0261] is re-examined. We find that it violates the requirement of information theoretic security in the secret sharing and suffers from the information leakage. The cryptanalysis including several specific attack strategies are given, which shows that a dishonest participant can steal half or all of the secrets without being detected. On the other hand, we design a new quantum secret sharing protocol. The security of protocol is rigorously proved. It meets the fundamental requirement of information theoretic security. Furthermore, the security analysis including both the outside attacks and participant attacks is given in details. It is shown that our proposed protocol can achieve perfect secret sharing.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950033 ◽  
Author(s):  
Ming-Hui Zhang ◽  
Jin-Ye Peng ◽  
Zheng-Wen Cao

Quantum dialogue can realize the mutual transmission of secret information between two legal users. In most of the existing quantum dialogue protocols, the information carriers applied in quantum dialogue are discrete variable (DV) quantum states. However, there are certain limitations on the preparation and detection of DV quantum states with current techniques. Continuous variable (CV) quantum states can overcome these problems effectively while improving the quantum channel capacity. In this paper, we propose a quantum dialogue protocol with four-mode continuous variable GHZ state. Compared with the existing CV-based quantum dialogue protocols, the protocol allows two users to transmit two groups of secret information with different lengths to each other simultaneously. The channel capacity of the protocol has been improved as each traveling mode carries two- or four-bits of information. In addition, the protocol has been proved to be secure against information leakage problem and some common attacks, such as beam splitter attack and intercept-and-resend attack.


2019 ◽  
Vol 28 (1) ◽  
pp. 010304
Author(s):  
Linxi Zhang ◽  
Changhua Zhu ◽  
Changxing Pei

1997 ◽  
Vol 55 (3) ◽  
pp. 1613-1622 ◽  
Author(s):  
Seth Lloyd

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ping Zhou ◽  
Li Lv

Abstract Implementing CNOT operation nonlocally is one of central tasks in distributed quantum computation. Most of previously protocols for implementation quantum CNOT operation only consider implement CNOT operation in one degree of freedom(DOF). In this paper, we present a scheme for nonlocal implementation of hyper-parallel CNOT operation in polarization and spatial-mode DOFs via hyperentanglement. The CNOT operations in polarization DOF and spatial-mode DOF can be remote implemented simultaneously with hyperentanglement assisited by cross-Kerr nonlinearity. Hyper-parallel nonlocal CNOT gate can enhance the quantum channel capacity for distributed quantum computation and long-distance quantum communication. We discuss the experiment feasibility for hyper-parallel nonlocal gate. It shows that the protocol for hyper-parallel nonlocal CNOT operation can be realized with current technology.


Sign in / Sign up

Export Citation Format

Share Document