unruh effect
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 77)

H-INDEX

27
(FIVE YEARS 5)

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Yongjie Pan ◽  
Baocheng Zhang

2021 ◽  
Author(s):  
Gong Xiao-long ◽  
Cao Shuo ◽  
Yue Fang ◽  
Liu Tong-Hua

Abstract Realistic quantum systems always exhibit gravitational and relativistic features. In this paper, we investigate the properties of Gaussian steering and its asymmetry by the localized two-mode Gaussian quantum states, instead of the traditional single-mode approximation method in the relativistic setting. We find that the one-side Gaussian quantum steering will monotonically decrease with increasing observers of acceleration. Meanwhile, our results also reveal the interesting behavior of the Gaussian steering asymmetry, which increases for a specific range of accelerated parameter and then gradually approaches to a finite value. Such findings is well consistent and explained by the well-known Unruh effect, which could significantly destroy the one-side Gaussian quantum steering. Finally, our results could also be applied to the dynamical studies of Gaussian steering between the Earth and satellites, since the effects of acceleration is equal to the effects of gravity according to the equivalence principle.


2021 ◽  
pp. 301-316
Author(s):  
Andrew M. Steane

The chapter presents the Penrose process, Hawking radiation, entropy and the laws of black hole thermodynamics. The Penrose process is derived and the area theorem is stated. A heuristic argument for the Hawking effect is given, emphasising a correct grasp of the concepts and the nature of the result. The Hawking effect and the Unruh effect are further discussed and linked together in a precise calculation. Evaporation of black holes is described. The information paradox is presented.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Giuseppe Gaetano Luciano ◽  
Massimo Blasone

AbstractFlavor mixing of quantum fields was found to be responsible for the breakdown of the thermality of Unruh effect. Recently, this result was revisited in the context of nonextensive Tsallis thermostatistics, showing that the emergent vacuum condensate can still be featured as a thermal-like bath, provided that the underlying statistics is assumed to obey Tsallis prescription. This was analyzed explicitly for bosons. Here we extend this study to Dirac fermions and in particular to neutrinos. Working in the relativistic approximation, we provide an effective description of the modified Unruh spectrum in terms of the q-generalized Tsallis statistics, the q-entropic index being dependent on the mixing parameters $$\sin \theta $$ sin θ and $$\Delta m$$ Δ m . As opposed to bosons, we find $$q>1$$ q > 1 , which is indicative of the subadditivity regime of Tsallis entropy. An intuitive understanding of this result is discussed in relation to the nontrivial entangled structure exhibited by the quantum vacuum for mixed fields, combined with the Pauli exclusion principle.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Julio Arrechea ◽  
Carlos Barceló ◽  
Luis J. Garay ◽  
Gerardo García-Moreno
Keyword(s):  

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Yuebing Zhou ◽  
Jiawei Hu ◽  
Hongwei Yu

Abstract We study, in the framework of open quantum systems, the entanglement dynamics for a quantum system composed of two uniformly accelerated Unruh-Dewitt detectors interacting with a bath of massive scalar fields in the Minkowski vacuum. We find that the entanglement evolution for the quantum system coupled with massive fields is always slower compared with that of the one coupled with massless fields, and this time-delay effect brought about by the field being massive can however be counteracted by a large enough acceleration, in contrast to the case of a static quantum system in a thermal bath, where this time delay is not affected by the temperature. Remarkably, the maximal concurrence of the quantum system generated during evolution may increase with acceleration for any inter-detector separation while that for static ones in a thermal bath decreases monotonically with temperature, and this can be considered as an anti-Unruh effect in terms of the entanglement generated.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Shahnewaz Ahmed ◽  
Mir Mehedi Faruk

Abstract We have investigated the Unruh effect in Anti de-Sitter (AdS) spacetime by examining the response function of an Unruh-DeWitt particle detector with uniform constant acceleration. An exact expression of the detector response function for the scalar field has been obtained with different levels of non-linearity in even dimensional AdS spacetime. We also showed how the response of the accelerated Unruh detector coupled quadratically to massless Dirac field in D dimensional (D ≥ 2) AdS spacetime is proportional to that of a detector linearly coupled to a massless scalar field in 2D dimensional AdS spacetime. Here, the fermionic and scalar matter field is coupled minimally and conformally to the background AdS metric, respectively. Finally, we discuss about the extension of the results for more general stationary motion.


2021 ◽  
Vol 36 (26) ◽  
pp. 2150186
Author(s):  
Bibhas Ranjan Majhi

Usual uniformly accelerated frame, in Dray–’t Hooft spacetime, does not see the any quantum imprint on Unruh effect due to localized shock wave in Minkowski spacetime. Here, we argue that such non-appearance of quantum memory is specific to those particular observers which do not incorporate the presence of wave in their trajectory. In fact, a detector, associated with a frame which is affected by the shock, cannot be trivial in terms of its response. We explicitly show that the later type of frame detects particle in the shock wave Minkowski vacuum which is the effect of shock. Therefore, this quantum memory is very special to specific class of observers as far as Dray–’t Hooft spacetime is concerned. We analyze for a null like trajectory along which the detector is moving.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Giuseppe Gaetano Luciano ◽  
Massimo Blasone
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document