DISCRETE TIME QUANTUM WALK ON A LINE WITH TWO PARTICLES

2006 ◽  
Vol 04 (03) ◽  
pp. 573-583 ◽  
Author(s):  
L. SHERIDAN ◽  
N. PAUNKOVIĆ ◽  
Y. OMAR ◽  
S. BOSE

We introduce the idea of a quantum walk with two particles and study it for the case of a discrete time walk on a line. We consider both separable and maximally entangled initial conditions, and show how the entanglement and the relative phase between the states describing the coin degree of freedom of each particle will influence the evolution of the quantum walk. In particular, these factors will have consequences for the distance between the particles and the probability of finding them at a given point, yielding results that cannot be obtained from a separable initial state, be it pure or mixed. Finally, we review briefly proposals for implementations.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Kenta Higuchi ◽  
Takashi Komatsu ◽  
Norio Konno ◽  
Hisashi Morioka ◽  
Etsuo Segawa

We consider the discrete-time quantum walk whose local dynamics is denoted by a common unitary matrix C at the perturbed region {0,1,⋯,M−1} and free at the other positions. We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed region receives the inflow ωn at time n(|ω|=1). From this expression, we compute the scattering on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We find a discontinuity of the energy with respect to the frequency of the inflow.


2014 ◽  
Vol 14 (5&6) ◽  
pp. 417-438
Author(s):  
Katharine E. Barr ◽  
Tim J. Proctor ◽  
Daniel Allen ◽  
Viv M. Kendon

We systematically investigated perfect state transfer between antipodal nodes of discrete time quantum walks on variants of the cycles $C_4$, $C_6$ and $C_8$ for three choices of coin operator. Perfect state transfer was found, in general, to be very rare, only being preserved for a very small number of ways of modifying the cycles. We observed that some of our useful modifications of $C_4$ could be generalised to an arbitrary number of nodes, and present three families of graphs which admit quantum walks with interesting dynamics either in the continuous time walk, or in the discrete time walk for appropriate selections of coin and initial conditions. These dynamics are either periodicity, perfect state transfer, or very high fidelity state transfer. These families are modifications of families known not to exhibit periodicity or perfect state transfer in general. The robustness of the dynamics is tested by varying the initial state, interpolating between structures and by adding decoherence.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 504
Author(s):  
Ce Wang ◽  
Caishi Wang

As a discrete-time quantum walk model on the one-dimensional integer lattice Z , the quantum walk recently constructed by Wang and Ye [Caishi Wang and Xiaojuan Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Information Processing 15 (2016), 1897–1908] exhibits quite different features. In this paper, we extend this walk to a higher dimensional case. More precisely, for a general positive integer d ≥ 2 , by using quantum Bernoulli noises we introduce a model of discrete-time quantum walk on the d-dimensional integer lattice Z d , which we call the d-dimensional QBN walk. The d-dimensional QBN walk shares the same coin space with the quantum walk constructed by Wang and Ye, although it is a higher dimensional extension of the latter. Moreover we prove that, for a range of choices of its initial state, the d-dimensional QBN walk has a limit probability distribution of d-dimensional standard Gauss type, which is in sharp contrast with the case of the usual higher dimensional quantum walks. Some other results are also obtained.


2012 ◽  
Vol 12 (3&4) ◽  
pp. 314-333
Author(s):  
Kota Chisaki ◽  
Norio Konno ◽  
Etsuo Segawa

We consider a discrete-time quantum walk W_{t,\kappa} at time t on a graph with joined half lines J_\kappa, which is composed of \kappa half lines with the same origin. Our analysis is based on a reduction of the walk on a half line. The idea plays an important role to analyze the walks on some class of graphs with symmetric initial states. In this paper, we introduce a quantum walk with an enlarged basis and show that W_{t,\kappa} can be reduced to the walk on a half line even if the initial state is asymmetric. For W_{t,\kappa}, we obtain two types of limit theorems. The first one is an asymptotic behavior of W_{t,\kappa} which corresponds to localization. For some conditions, we find that the asymptotic behavior oscillates. The second one is the weak convergence theorem for W_{t,\kappa}. On each half line, W_{t,\kappa} converges to a density function like the case of the one-dimensional lattice with a scaling order of t. The results contain the cases of quantum walks starting from the general initial state on a half line with the general coin and homogeneous trees with the Grover coin.


2013 ◽  
Vol 13 (5&6) ◽  
pp. 430-438
Author(s):  
Takuya Machida

Since a limit distribution of a discrete-time quantum walk on the line was derived in 2002, a lot of limit theorems for quantum walks with a localized initial state have been reported. On the other hand, in quantum probability theory, there are four notions of independence (free, monotone, commuting, and boolean independence) and quantum central limit theorems associated to each independence have been investigated. The relation between quantum walks and quantum probability theory is still unknown. As random walks are fundamental models in the Kolmogorov probability theory, can the quantum walks play an important role in quantum probability theory? To discuss this problem, we focus on a discrete-time 2-state quantum walk with a non-localized initial state and present a limit theorem. By using our limit theorem, we generate probability laws in the quantum central limit theorems from the quantum walk.


2018 ◽  
Vol 382 (13) ◽  
pp. 899-903
Author(s):  
Jia-Yi Lin ◽  
Xuanmin Zhu ◽  
Shengjun Wu

2018 ◽  
Vol 16 (03) ◽  
pp. 1850023
Author(s):  
Takuya Machida

Discrete-time quantum walks are considered a counterpart of random walks and their study has been getting attention since around 2000. In this paper, we focus on a quantum walk which generates a probability distribution splitting to two parts. The quantum walker with two coin states spreads at points, represented by integers, and we analyze the chance of finding the walker at each position after it carries out a unitary evolution a lot of times. The result is reported as a long-time limit distribution from which one can see an approximation to the finding probability.


Sign in / Sign up

Export Citation Format

Share Document